Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = tricyclene synthase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1545 KB  
Article
The Biosynthesis of the Monoterpene Tricyclene in E. coli through the Appropriate Truncation of Plant Transit Peptides
by Meijia Zhao, Shaoheng Bao, Jiajia Liu, Fuli Wang, Ge Yao, Penggang Han, Xiukun Wan, Chang Chen, Hui Jiang, Xinghua Zhang and Wenchao Zhu
Fermentation 2024, 10(3), 173; https://doi.org/10.3390/fermentation10030173 - 20 Mar 2024
Cited by 3 | Viewed by 3483
Abstract
Tricyclene, a tricyclic monoterpene naturally occurring in plant essential oils, holds potential for the development of medicinal and fuel applications. In this study, we successfully synthesized tricyclene in E. coli by introducing the heterologous mevalonate (MVA) pathway along with Abies grandis geranyl diphosphate [...] Read more.
Tricyclene, a tricyclic monoterpene naturally occurring in plant essential oils, holds potential for the development of medicinal and fuel applications. In this study, we successfully synthesized tricyclene in E. coli by introducing the heterologous mevalonate (MVA) pathway along with Abies grandis geranyl diphosphate synthase (GPPS) and Nicotiana sylvestris tricyclene synthase (TS) XP_009791411. Initially, the shake-flask fermentation at 30 C yielded a tricyclene titer of 0.060 mg/L. By increasing the copy number of the TS-coding gene, we achieved a titer of 0.103 mg/L. To further enhance tricyclene production, optimal truncation in the N-terminal region of TS XP_009791411 resulted in an impressive highest titer of 47.671 mg/L, approximately a 794.5-fold improvement compared to its wild-type counterpart. To the best of our knowledge, this is the highest titer of the heterologous synthesis of tricyclene in E. coli. The SDS-PAGE analysis revealed that lowering induction temperature and truncating the random coil N-terminal region effectively improved TS solubility, which was closely associated with tricyclene production levels. Furthermore, by truncating other TSs, the titers of tricyclene were improved to different degrees. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop