Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = triazabicyclodecene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2093 KB  
Article
Methanolysis of Poly(lactic Acid) Using Catalyst Mixtures and the Kinetics of Methyl Lactate Production
by Fabio M. Lamberti, Luis A. Román-Ramírez, Andrew P. Dove and Joseph Wood
Polymers 2022, 14(9), 1763; https://doi.org/10.3390/polym14091763 - 26 Apr 2022
Cited by 11 | Viewed by 5154
Abstract
Polylactic acid (PLA) is a leading bioplastic of which the market share is predicted to increase in the future; its growing production capacity means its end-of-life treatment is becoming increasingly important. One beneficial disposal route for PLA is its chemical recycling via alcoholysis. [...] Read more.
Polylactic acid (PLA) is a leading bioplastic of which the market share is predicted to increase in the future; its growing production capacity means its end-of-life treatment is becoming increasingly important. One beneficial disposal route for PLA is its chemical recycling via alcoholysis. The alcoholysis of PLA leads to the generation of value-added products alkyl lactates; this route also has potential for a circular economy. In this work, PLA was chemically recycled via methanolysis to generate methyl lactate (MeLa). Four commercially available catalysts were investigated: zinc acetate dihydrate (Zn(OAc)2), magnesium acetate tetrahydrate (Mg(OAc)2), 4-(dimethylamino)pyridine (DMAP), and triazabicyclodecene (TBD). Dual catalyst experiments displayed an increase in reactivity when Zn(OAc)2 was paired with TBD or DMAP, or when Mg(OAc)2 was paired with TBD. Zn(OAc)2 coupled with TBD displayed the greatest reactivity. Out of the single catalyst reactions, Zn(OAc)2 exhibited the highest activity: a higher mol% was found to increase reaction rate but plateaued at 4 mol%, and a higher equivalent of methanol was found to increase the reaction rate, but plateaued at 17 equivalents. PLA methanolysis was modelled as a two-step reversible reaction; the activation energies were estimated at: Ea1 = 25.23 kJ∙mol−1, Ea2 = 34.16 kJ∙mol−1 and Ea-2 = 47.93 kJ∙mol−1. Full article
(This article belongs to the Special Issue Chemical Recycling of Polymers)
Show Figures

Graphical abstract

16 pages, 2770 KB  
Article
Adamantane Functionalized Poly(2-oxazoline)s with Broadly Tunable LCST-Behavior by Molecular Recognition
by Joachim F. R. Van Guyse, Debaditya Bera and Richard Hoogenboom
Polymers 2021, 13(3), 374; https://doi.org/10.3390/polym13030374 - 26 Jan 2021
Cited by 13 | Viewed by 3470
Abstract
Smart or adaptive materials often utilize stimuli-responsive polymers, which undergo a phase transition in response to a given stimulus. So far, various stimuli have been used to enable the modulation of drug release profiles, cell-interactive behavior, and optical and mechanical properties. In this [...] Read more.
Smart or adaptive materials often utilize stimuli-responsive polymers, which undergo a phase transition in response to a given stimulus. So far, various stimuli have been used to enable the modulation of drug release profiles, cell-interactive behavior, and optical and mechanical properties. In this respect, molecular recognition is a powerful tool to fine-tune the stimuli-responsive behavior due to its high specificity. Within this contribution, a poly(2-oxazoline) copolymer bearing adamantane side chains was synthesized via triazabicyclodecene-catalyzed amidation of the ester side chains of a poly(2-ethyl-2-oxazoline-stat-2-methoxycarbonylpropyl-2-oxazoline) statistical copolymer. Subsequent complexation of the pendant adamantane groups with sub-stoichiometric amounts (0–1 equivalents) of hydroxypropyl β-cyclodextrin or β-cyclodextrin enabled accurate tuning of its lower critical solution temperature (LCST) over an exceptionally wide temperature range, spanning from 30 °C to 56 °C. Furthermore, the sharp thermal transitions display minimal hysteresis, suggesting a reversible phase transition of the complexed polymer chains (i.e., the β-cyclodextrin host collapses together with the polymers) and a minimal influence by the temperature on the supramolecular association. Analysis of the association constant of the polymer with hydroxypropyl β-cyclodextrin via 1H NMR spectroscopy suggests that the selection of the macrocyclic host and rational polymer design can have a profound influence on the observed thermal transitions. Full article
(This article belongs to the Special Issue Post-Polymerization Modification)
Show Figures

Graphical abstract

18 pages, 4087 KB  
Article
Recyclable Organocatalyzed Poly(Thiourethane) Covalent Adaptable Networks
by Francesco Gamardella, Sara Muñoz, Silvia De la Flor, Xavier Ramis and Angels Serra
Polymers 2020, 12(12), 2913; https://doi.org/10.3390/polym12122913 - 4 Dec 2020
Cited by 32 | Viewed by 4720
Abstract
A new type of tetraphenylborate salts derived from highly basic and nucleophilic amines, namely 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and triazabicyclodecene (TBD), was applied to the preparation of networked poly(thiourethane)s (PTUs), which showed a vitrimer-like behavior, with higher stress-relaxation rates than PTUs prepared by [...] Read more.
A new type of tetraphenylborate salts derived from highly basic and nucleophilic amines, namely 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and triazabicyclodecene (TBD), was applied to the preparation of networked poly(thiourethane)s (PTUs), which showed a vitrimer-like behavior, with higher stress-relaxation rates than PTUs prepared by using dibutyl thin dilaurate (DBTDL) as the catalyst. The use of these salts, which release the amines when heated, instead of the pure amines, allows the formulation to be easily manipulated to prepare any type of samples. The materials prepared from stoichiometric mixtures of hexamethylene diisocyanate (HDI), trithiol (S3) and with a 10% of molar excess of isocyanate or thiol were characterized by FTIR, thermomechanical analysis, thermogravimetry, stress-relaxation tests and tensile tests, thus obtaining a complete thermal and mechanical characterization of the materials. The recycled materials obtained by grinding the original PTUs and hot-pressing the small pieces in the optimized time and temperature conditions were fully characterized by mechanical, thermomechanical and FTIR studies. This allowed us to confirm their recyclability, without appreciable changes in the network structure and performance. From several observations, the dissociative interchange trans-thiocarbamoylation mechanism was evidenced as the main responsible of the topological rearrangements at high temperature, resulting in a vitrimeric-like behavior. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Spain (2020,2021))
Show Figures

Graphical abstract

Back to TopTop