Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = triaxial creep–seepage experiment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5736 KiB  
Article
Characteristics of Creep and Permeability Changes in Coal Samples from Underground Water Storage Structures Under High Stresses
by Zichang Liu, Yinghu Li, Kaifang Fan, Shijun Wang, Yanchang Gu, Ze Xia and Qiangling Yao
Water 2025, 17(4), 538; https://doi.org/10.3390/w17040538 - 13 Feb 2025
Viewed by 611
Abstract
Underground reservoirs are a key technology for storing mine-impacted water resources, and the long-term stability of their coal pillar dams in high-stress environments is critical. The long-term safety of coal pillar dams in such reservoirs is closely related to creep and water seepage [...] Read more.
Underground reservoirs are a key technology for storing mine-impacted water resources, and the long-term stability of their coal pillar dams in high-stress environments is critical. The long-term safety of coal pillar dams in such reservoirs is closely related to creep and water seepage phenomena. To better illustrate this phenomenon, internal expansion coefficients and porosity blocking coefficients are proposed in this study to characterize how water affects the evolution of permeability in water-bearing coal samples. A novel model is developed to capture the interaction between matrix and fractures and the influence of creep deformation on permeability in water-bearing coal samples. Triaxial creep–seepage experiments are conducted on raw coal samples with varying moisture content. The results show that volumetric strain values and strain rates increase with rising effective stress during creep and show a tendency to first increase and then decrease with the increase in moisture content. Additionally, permeability consistently decreases at each stage of creep. Model parameters are determined through the nonlinear least squares method, and the reliability of the permeability model is validated based on experimental data. Both theoretical modeling and experimental results indicate that water seepage–creep coupling significantly affects the long-term strength of coal samples in a high-stress environment, and corresponding prevention and control measures are suggested. This study can provide a scientific basis and guidance for the study of long-term operational destabilization damage of coal mine underground reservoirs to ensure the safety of the structure. Full article
Show Figures

Figure 1

12 pages, 4046 KiB  
Article
Experimental Investigation on Strain Changes during CO2 Adsorption of Raw Coal Sample: Temperature and Effective Stress
by Kai Wang, Qichao Fu, Xiang Zhang and Hengyi Jia
Energies 2021, 14(3), 717; https://doi.org/10.3390/en14030717 - 30 Jan 2021
Cited by 4 | Viewed by 1687
Abstract
Through laboratory simulation experiments, this paper studies the influence of different temperature and stress conditions on strain changes of raw coal samples induced by the CO2 adsorption with tri-axial creep-seepage and adsorption-desorption experimental system. Comparing and analyzing the experimental results, the study [...] Read more.
Through laboratory simulation experiments, this paper studies the influence of different temperature and stress conditions on strain changes of raw coal samples induced by the CO2 adsorption with tri-axial creep-seepage and adsorption-desorption experimental system. Comparing and analyzing the experimental results, the study shows that: (1) within a certain time, the axial and radial strain of the raw coal sample induced by CO2 adsorption both show a growing trend as the adsorption time increases and the strain of the raw coal sample for CO2 adsorption is obvious anisotropy; (2) at the same point in time, the greater the axial effective stress, the smaller the axial strain increasing rate of the loaded coal sample during CO2 adsorption process and the smaller the value of axial deformation; (3) during the adsorption process, the volume strain of raw coal sample decreases with the increasing of temperature, namely, the adsorption capacity of raw coal sample decreases with the increasing of temperature. Full article
Show Figures

Figure 1

Back to TopTop