Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = triarylethylenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2416 KiB  
Article
Visible-Light Photoredox Catalyzed Formation of Triarylethylenes Using a Low-Cost Photosensitizer
by Daniel Álvarez-Gutiérrez, Paola Domínguez Domínguez, Raúl Pérez-Ruiz, David Díaz Díaz and M. Consuelo Jiménez
Photochem 2025, 5(2), 13; https://doi.org/10.3390/photochem5020013 - 13 May 2025
Viewed by 996
Abstract
Visible-light photoredox catalysis using biacetyl (BA) as a low-cost photosensitizer enables the efficient formation of triarylethylenes (TAEs) via a Mizoroki–Heck-type coupling. The reaction proceeds efficiently in acetonitrile upon blue LED irradiation under anaerobic conditions. Alternatively, supramolecular viscoelastic gels have also been [...] Read more.
Visible-light photoredox catalysis using biacetyl (BA) as a low-cost photosensitizer enables the efficient formation of triarylethylenes (TAEs) via a Mizoroki–Heck-type coupling. The reaction proceeds efficiently in acetonitrile upon blue LED irradiation under anaerobic conditions. Alternatively, supramolecular viscoelastic gels have also been explored as reaction media, allowing the possibility of working under aerobic atmosphere. Mechanistic investigations by means of transient absorption spectroscopy and quenching experiments support a charge-separated intermediate pathway. Reaction quantum yield measurements further validate the efficiency of BA, demonstrating its potential as an alternative to transition-metal catalysts. Overall, this work presents a sustainable and scalable strategy for TAEs synthesis, integrating photoredox catalysis with soft material engineering. These findings pave the way for broader applications in green chemistry and functional materials. Full article
Show Figures

Figure 1

Back to TopTop