Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = trans-kingdom regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3896 KiB  
Review
Trans-Kingdom RNA Dialogues: miRNA and milRNA Networks as Biotechnological Tools for Sustainable Crop Defense and Pathogen Control
by Hui Jia, Pan Li, Minye Li, Ning Liu, Jingao Dong, Qing Qu and Zhiyan Cao
Plants 2025, 14(8), 1250; https://doi.org/10.3390/plants14081250 - 20 Apr 2025
Viewed by 657
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 20–24 nucleotides in length, which play a crucial role during gene regulation in plant–pathogen interaction. They negatively regulate the expression of target genes, primarily at the transcriptional or post-transcriptional level, through complementary base pairing [...] Read more.
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 20–24 nucleotides in length, which play a crucial role during gene regulation in plant–pathogen interaction. They negatively regulate the expression of target genes, primarily at the transcriptional or post-transcriptional level, through complementary base pairing with target gene sequences. Recent studies reveal that during pathogen infection, miRNAs produced by plants and miRNA-like RNAs (milRNAs) produced by fungi can regulate the expression of endogenous genes in their respective organisms and undergo trans-kingdom transfer. They can thereby negatively regulate the expression of target genes in recipient cells. These findings provide novel perspectives for deepening our understanding of the regulatory mechanisms underlying plant–pathogen interactions. Here, we summarize and discuss the roles of miRNAs and milRNAs in mediating plant–pathogen interactions via multiple pathways, providing new insights into the functions of these RNAs and their modes of action. Collectively, these insights lay a theoretical foundation for the targeted management of crop diseases. Full article
Show Figures

Figure 1

17 pages, 1119 KiB  
Review
Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant–Virus–Vector Tritrophic Communication
by Emilyn E. Matsumura and Richard Kormelink
Plants 2023, 12(6), 1411; https://doi.org/10.3390/plants12061411 - 22 Mar 2023
Cited by 2 | Viewed by 3054
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their [...] Read more.
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen–pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens’ messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus–plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination. Full article
(This article belongs to the Special Issue Effects of Small RNA on Plant-Pathogen Interactions)
Show Figures

Figure 1

22 pages, 1101 KiB  
Review
Molecular Defense Response of Pine Trees (Pinus spp.) to the Parasitic Nematode Bursaphelenchus xylophilus
by Inês Modesto, André Mendes, Isabel Carrasquinho and Célia M. Miguel
Cells 2022, 11(20), 3208; https://doi.org/10.3390/cells11203208 - 13 Oct 2022
Cited by 24 | Viewed by 3773
Abstract
Pine wilt disease (PWD) is a severe environmental problem in Eastern Asia and Western Europe, devastating large forest areas and causing significant economic losses. This disease is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, a parasitic migratory nematode that infects [...] Read more.
Pine wilt disease (PWD) is a severe environmental problem in Eastern Asia and Western Europe, devastating large forest areas and causing significant economic losses. This disease is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, a parasitic migratory nematode that infects the stem of conifer trees. Here we review what is currently known about the molecular defense response in pine trees after infection with PWN, focusing on common responses in different species. By giving particular emphasis to resistance mechanisms reported for selected varieties and families, we identified shared genes and pathways associated with resistance, including the activation of oxidative stress response, cell wall lignification, and biosynthesis of terpenoids and phenylpropanoids. The role of post-transcriptional regulation by small RNAs in pine response to PWN infection is also discussed, as well as the possible implementation of innovative RNA-interference technologies, with a focus on trans-kingdom small RNAs. Finally, the defense response induced by elicitors applied to pine plants before PWN infection to prompt resistance is reviewed. Perspectives about the impact of these findings and future research approaches are discussed. Full article
(This article belongs to the Special Issue Research on Plant Functional Genomics and Stress Response)
Show Figures

Figure 1

20 pages, 4061 KiB  
Article
Transkingdom Analysis of the Female Reproductive Tract Reveals Bacteriophages form Communities
by Ferralita S. Madere, Michael Sohn, Angelina K. Winbush, Breóna Barr, Alex Grier, Cal Palumbo, James Java, Tracy Meiring, Anna-Lise Williamson, Linda-Gail Bekker, David H. Adler and Cynthia L. Monaco
Viruses 2022, 14(2), 430; https://doi.org/10.3390/v14020430 - 19 Feb 2022
Cited by 13 | Viewed by 3947
Abstract
The female reproductive tract (FRT) microbiome plays a vital role in maintaining vaginal health. Viruses are key regulators of other microbial ecosystems, but little is known about how the FRT viruses (virome), particularly bacteriophages that comprise the phageome, impact FRT health and dysbiosis. [...] Read more.
The female reproductive tract (FRT) microbiome plays a vital role in maintaining vaginal health. Viruses are key regulators of other microbial ecosystems, but little is known about how the FRT viruses (virome), particularly bacteriophages that comprise the phageome, impact FRT health and dysbiosis. We hypothesize that bacterial vaginosis (BV) is associated with altered FRT phageome diversity, transkingdom interplay, and bacteriophage discriminate taxa. Here, we conducted a retrospective, longitudinal analysis of vaginal swabs collected from 54 BV-positive and 46 BV-negative South African women. Bacteriome analysis revealed samples clustered into five distinct bacterial community groups (CGs), and further, bacterial alpha diversity was significantly associated with BV. Virome analysis on a subset of baseline samples showed FRT bacteriophages clustering into novel viral state types (VSTs), a viral community clustering system based on virome composition and abundance. Distinct BV bacteriophage signatures included increased alpha diversity along with discriminant Bacillus, Burkholderia, and Escherichia bacteriophages. Bacteriophage-bacteria transkingdom associations were also identified between Bacillus and Burkholderia viruses and BV-associated bacteria, providing key insights for future studies elucidating the transkingdom interactions driving BV-associated microbiome perturbations. In this cohort, bacteriophage-bacterial associations suggest complex interactions, which may play a role in the establishment and maintenance of BV. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

14 pages, 2009 KiB  
Review
Cis- and Trans-Encoded Small Regulatory RNAs in Bacillus subtilis
by Sabine Brantl and Peter Müller
Microorganisms 2021, 9(9), 1865; https://doi.org/10.3390/microorganisms9091865 - 2 Sep 2021
Cited by 20 | Viewed by 4133
Abstract
Small regulatory RNAs (sRNAs) that act by base-pairing are the most abundant posttranscriptional regulators in all three kingdoms of life. Over the past 20 years, a variety of approaches have been employed to discover chromosome-encoded sRNAs in a multitude of bacterial species. However, [...] Read more.
Small regulatory RNAs (sRNAs) that act by base-pairing are the most abundant posttranscriptional regulators in all three kingdoms of life. Over the past 20 years, a variety of approaches have been employed to discover chromosome-encoded sRNAs in a multitude of bacterial species. However, although largely improved bioinformatics tools are available to predict potential targets of base-pairing sRNAs, it is still challenging to confirm these targets experimentally and to elucidate the mechanisms as well as the physiological role of their sRNA-mediated regulation. Here, we provide an overview of currently known cis- and trans-encoded sRNAs from B. subtilis with known targets and defined regulatory mechanisms and on the potential role of RNA chaperones that are or might be required to facilitate sRNA regulation in this important Gram-positive model organism. Full article
(This article belongs to the Special Issue Gene Analysis in Bacillus subtilis)
Show Figures

Figure 1

21 pages, 1399 KiB  
Review
Extracellular RNAs in Bacterial Infections: From Emerging Key Players on Host-Pathogen Interactions to Exploitable Biomarkers and Therapeutic Targets
by Tiago Pita, Joana R. Feliciano and Jorge H. Leitão
Int. J. Mol. Sci. 2020, 21(24), 9634; https://doi.org/10.3390/ijms21249634 - 17 Dec 2020
Cited by 17 | Viewed by 4125
Abstract
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous [...] Read more.
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous RNAs, which are exported to the extracellular medium, mainly through vesicles. In bacteria, membrane vesicles (MVs) seem to be the more common way of extracellular communication. In several bacterial pathogens, MVs have been described as a delivery system of ncRNAs that upon entry into the host cell, regulate their immune response. The aim of the present work is to review this recently described mode of host-pathogen communication and to foster further research on this topic envisaging their exploitation in the design of novel therapeutic and diagnostic strategies to fight bacterial infections. Full article
(This article belongs to the Special Issue Microbial Virulence Factors 2.0)
Show Figures

Figure 1

30 pages, 4933 KiB  
Review
Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants
by Matteo Calcagnile, Salvatore Maurizio Tredici, Adelfia Talà and Pietro Alifano
Insects 2019, 10(12), 441; https://doi.org/10.3390/insects10120441 - 8 Dec 2019
Cited by 27 | Viewed by 12421
Abstract
A peculiar feature of all living beings is their capability to communicate. With the discovery of the quorum sensing phenomenon in bioluminescent bacteria in the late 1960s, it became clear that intraspecies and interspecies communications and social behaviors also occur in simple microorganisms [...] Read more.
A peculiar feature of all living beings is their capability to communicate. With the discovery of the quorum sensing phenomenon in bioluminescent bacteria in the late 1960s, it became clear that intraspecies and interspecies communications and social behaviors also occur in simple microorganisms such as bacteria. However, at that time, it was difficult to imagine how such small organisms—invisible to the naked eye—could influence the behavior and wellbeing of the larger, more complex and visible organisms they colonize. Now that we know this information, the challenge is to identify the myriad of bacterial chemical signals and communication networks that regulate the life of what can be defined, in a whole, as a meta-organism. In this review, we described the transkingdom crosstalk between bacteria, insects, and plants from an ecological perspective, providing some paradigmatic examples. Second, we reviewed what is known about the genetic and biochemical bases of the bacterial chemical communication with other organisms and how explore the semiochemical potential of a bacterium can be explored. Finally, we illustrated how bacterial semiochemicals managing the transkingdom communication may be exploited from a biotechnological point of view. Full article
(This article belongs to the Special Issue Semiochemicals and Insect Behavior)
Show Figures

Figure 1

Back to TopTop