Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = traffic conditions around schools

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17917 KiB  
Article
Closing Access Streets to Schools for Vehicular Traffic—Does It Affect the Air Quality?
by Artur Badyda and Mariusz Rogulski
Sustainability 2024, 16(8), 3380; https://doi.org/10.3390/su16083380 - 17 Apr 2024
Cited by 1 | Viewed by 1834
Abstract
This article presents the impact of vehicle traffic intensity and the closure of access roads for wheeled vehicles to selected schools in Warsaw at selected hours of the day on changes in air quality. This study focused primarily on analyses related to the [...] Read more.
This article presents the impact of vehicle traffic intensity and the closure of access roads for wheeled vehicles to selected schools in Warsaw at selected hours of the day on changes in air quality. This study focused primarily on analyses related to the pollutant typical of road traffic, i.e., nitrogen dioxide, but also took into account PM10 and PM2.5 concentrations, which are some of the key factors determining the quality of atmospheric air, the sustainability of human beings, and sustainable development. Some kinds of relationships were found between vehicle traffic intensity and air pollutant concentrations, in particular—nitrogen dioxide. Analyses of the pollutant concentrations in the periods before and after the introduction of restrictions on vehicle traffic on working days indicate that, in the case of two of the schools during the morning traffic rush hours, significantly lower NO2 concentrations were observed in the period after the introduction of road traffic restrictions, compared with the period before they were introduced. NO2 concentrations during the morning peak hours (on working days) after introducing restrictions were more than 30% lower than the concentrations recorded during the same hours in the period before introducing restrictions. Full article
Show Figures

Figure 1

21 pages, 6549 KiB  
Article
Assessment of Air Quality in School Environments in Hanoi, Vietnam: A Focus on Mass-Size Distribution and Elemental Composition of Indoor-Outdoor Ultrafine/Fine/Coarse Particles
by Trinh Dinh Tran, Phuong Minh Nguyen, Dung Trung Nghiem, Tuyen Huu Le, Minh Binh Tu, Laurent Y. Alleman, Viet Minh Nguyen, Dong Thanh Pham, Ngoc Minh Ha, Minh Nhat Dang, Chieu Van Le and Noi Van Nguyen
Atmosphere 2020, 11(5), 519; https://doi.org/10.3390/atmos11050519 - 18 May 2020
Cited by 25 | Viewed by 5998
Abstract
Indoor and outdoor ultrafine, accumulation mode, and coarse fractions collected at two preschools (S1 and S2) in Hanoi capital, Vietnam were characterized in terms of mass-size distribution and elemental composition to identify major emission sources. The sampling campaigns were performed simultaneously indoors and [...] Read more.
Indoor and outdoor ultrafine, accumulation mode, and coarse fractions collected at two preschools (S1 and S2) in Hanoi capital, Vietnam were characterized in terms of mass-size distribution and elemental composition to identify major emission sources. The sampling campaigns were performed simultaneously indoors and outdoors over four consecutive weeks at each school. Indoor average concentrations of CO2 and CO at both schools were below the limit values recommended by American Society of Heating, Refrigerating and Air-Conditioning Engineers (1000 ppm for CO2) and World Health Organization (7 mg/m3 for CO). Indoor concentrations of PM2.5 and PM10 at S1 and S2 were strongly influenced by the presence of children and their activities indoors. The indoor average concentrations of PM2.5 and PM10 were 49.4 µg/m3 and 59.7 µg/m3 at S1, while those values at S2 were 7.9 and 10.8 µg/m3, respectively. Mass-size distribution of indoor and outdoor particles presented similar patterns, in which ultrafine particles accounted for around 15–20% wt/wt while fine particles (PM2.5) made up almost 80% wt/wt of PM10. PM2.5–10 did not display regular shapes while smaller factions tended to aggregate to form clusters with fine structures. Oxygen (O) was the most abundant element in all fractions, followed by carbon (C) for indoor and outdoor particles. O accounted for 36.2% (PM0.5–1) to 42.4% wt/wt (PM0.1) of indoor particles, while those figures for C were in the range of 14.5% (for PM0.1) to 18.1% (for PM1–2.5). Apart from O and C, mass proportion of other major and minor elements (Al, Ca, Cr, Fe , K, Mg, Si, Ti) could make up to 50%, whereas trace elements (As, Bi, Cd, Co, Cr, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, and Zn) accounted for less than 0.5% of indoor and outdoor airborne particles. There were no significant indoor emission sources of trace and minor elements. Traffic significantly contributed to major and trace elements at S1 and S2. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

Back to TopTop