Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = time domain transmission (TDT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2820 KiB  
Article
Robust Soil Water Potential Sensor to Optimize Irrigation in Agriculture
by David Menne, Christof Hübner, Dennis Trebbels and Norbert Willenbacher
Sensors 2022, 22(12), 4465; https://doi.org/10.3390/s22124465 - 13 Jun 2022
Cited by 13 | Viewed by 4668
Abstract
Extreme weather phenomena are on the rise due to ongoing climate change. Therefore, the need for irrigation in agriculture will increase, although it is already the largest consumer of water, a valuable resource. Soil moisture sensors can help to use water efficiently and [...] Read more.
Extreme weather phenomena are on the rise due to ongoing climate change. Therefore, the need for irrigation in agriculture will increase, although it is already the largest consumer of water, a valuable resource. Soil moisture sensors can help to use water efficiently and economically. For this reason, we have recently presented a novel soil moisture sensor with a high sensitivity and broad measuring range. This device does not measure the moisture in the soil but the water available to plants, i.e., the soil water potential (SWP). The sensor consists of two highly porous (>69%) ceramic discs with a broad pore size distribution (0.5 to 200 μm) and a new circuit board system using a transmission line within a time-domain transmission (TDT) circuit. This detects the change in the dielectric response of the ceramic discs with changing water uptake. To prove the concept, a large number of field tests were carried out and comparisons were made with commercial soil water potential sensors. The experiments confirm that the sensor signal is correlated to the soil water potential irrespective of soil composition and is thus suitable for the optimization of irrigation systems. Full article
(This article belongs to the Topic Metrology-Assisted Production in Agriculture and Forestry)
Show Figures

Figure 1

17 pages, 10295 KiB  
Article
Modeling, Verification, and Signal Integrity Analysis of High-Speed Signaling Channel with Tabbed Routing in High Performance Computing Server Board
by Kyunghwan Song, Jongwook Kim, Hyunwoong Kim, Seonghi Lee, Jangyong Ahn, Andres Brito, Hyunsik Kim, Minho Park and Seungyoung Ahn
Electronics 2021, 10(13), 1590; https://doi.org/10.3390/electronics10131590 - 1 Jul 2021
Cited by 11 | Viewed by 4883
Abstract
It is necessary to reduce the crosstalk noise in high-speed signaling channels. In the channel routing area, the tabbed routing pattern is used to mitigate far-end crosstalk (FEXT), and the electrical length is controlled with a time domain reflectometer (TDR) and time domain [...] Read more.
It is necessary to reduce the crosstalk noise in high-speed signaling channels. In the channel routing area, the tabbed routing pattern is used to mitigate far-end crosstalk (FEXT), and the electrical length is controlled with a time domain reflectometer (TDR) and time domain transmission (TDT). However, unlike traditional channels having uniform width and space, the width and space of tabbed routing changes by segment, and the capacitance and inductance values of tabbed routing also change. In this paper, we propose a tabbed routing equivalent circuit modeling method using the segmentation approach. The proposed model was verified using 3D EM simulation and measurement results in the frequency domain. Based on the calculated inductance and capacitance parameters, we analyzed the insertion loss, FEXT, and self-impedance in the frequency domain, and TDT and FEXT in the time domain, by comparing the values of these metrics with and without tabbed routing. Using the proposed tabbed routing model, we analyzed tabbed routing with variations of design parameters based on self- and mutual-capacitance and inductance. Full article
Show Figures

Figure 1

13 pages, 6276 KiB  
Article
Penetration Depth of a Soil Moisture Profile Probe Working in Time-Domain Transmission Mode
by Marcin Kafarski, Jacek Majcher, Andrzej Wilczek, Agnieszka Szyplowska, Arkadiusz Lewandowski, Alicja Zackiewicz and Wojciech Skierucha
Sensors 2019, 19(24), 5485; https://doi.org/10.3390/s19245485 - 12 Dec 2019
Cited by 18 | Viewed by 3438
Abstract
Soil moisture is one of the most important soil parameters. Knowledge of volumetric water content (VWC) of the root zone as well as the VWC dynamics in the soil profile is especially important for agriculture. Monitoring VWC at several depths in the soil [...] Read more.
Soil moisture is one of the most important soil parameters. Knowledge of volumetric water content (VWC) of the root zone as well as the VWC dynamics in the soil profile is especially important for agriculture. Monitoring VWC at several depths in the soil profile can be performed using several soil moisture sensors placed at various depths. However, the use of a profile probe is more convenient, because the installation of a single probe is less disturbing to the soil, as well as less laborious and more cost-effective. The objective of the paper is to present the design and performance of a novel profile probe working in the time-domain transmission mode (P-TDT probe) with emphasis put on the penetration depth and sensitivity zone. The performance of the probe was assessed with the use of finite element method (FEM) simulations in the frequency domain, transient simulations in the time domain and laboratory experiments with the use of a vector network analyzer (VNA) working in the 10 MHz–10 GHz frequency range. It was concluded that the effective soil volume measured by the profile probe of a given geometry is equivalent to a soil thickness of about 20 mm around the tested probe. The internal part of the probe body had a negligible effect on the measurement results, as it does not change with soil moisture. Moreover, the transmitted signal amplitude was related to the soil electrical conductivity. Full article
(This article belongs to the Special Issue Selected Papers from ISEMA 2018)
Show Figures

Figure 1

15 pages, 272 KiB  
Article
Soil Moisture Sensing via Swept Frequency Based Microwave Sensors
by Mathew G. Pelletier, Sundar Karthikeyan, Timothy R. Green, Robert C. Schwartz, John D. Wanjura and Greg A. Holt
Sensors 2012, 12(1), 753-767; https://doi.org/10.3390/s120100753 - 11 Jan 2012
Cited by 18 | Viewed by 8758
Abstract
There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI) that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive [...] Read more.
There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI) that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR). The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT). The measurement is comparable to time domain transmissometry (TDT) with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument’s ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/−105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r2 = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the SFI instrument over a range of soil types, at varying levels of moisture. This testing protocol was developed to provide the best possible comparison between SFI to TDT than would otherwise be possible by using soil moisture as the bench mark, due to variations in soil density between soil water content levels which are known to impact the calibration between TDR’s estimate of soil water content from the measured propagation delay which is converted to an apparent permittivity measurement. This experimental decision, to compare propagation delay of TDT to FDT, effectively removes the errors due to variations in packing density from the evaluation and provides a direct comparison between the SFI instrument and the time domain technique of TDT. The tests utilized three soils (a sand, an Acuff loam and an Olton clay-loam) that were packed to varying bulk densities and prepared to provide a range of water contents and electrical conductivities by which to compare the performance of the SFI technology to TDT measurements of propagation delay. For each sample tested, the SFI instrument and the TDT both performed the measurements on the exact same probe, thereby both instruments were measuring the exact same soil/soil-probe response to ensure the most accurate means to compare the SFI instrument to a high-end TDT instrument. Test results provided an estimated instrumental accuracy for the SFI of +/−0.98% of full scale, RMSE basis, for the precision delay lines and +/−1.32% when the SFI was evaluated on loam and clay loam soils, in comparison to TDT as the bench-mark. Results from both experiments provide evidence that the low-cost SFI approach is a viable alternative to conventional TDR/TDT for high accuracy applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop