Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = thermally reduced graphene oxide magnetite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9903 KiB  
Article
Tuning Electro-Magnetic Interference Shielding Efficiency of Customized Polyurethane Composite Foams Taking Advantage of rGO/Fe3O4 Hybrid Nanocomposites
by Hussein Oraby, Hesham Ramzy Tantawy, Miguel A. Correa-Duarte, Mohammad Darwish, Amir Elsaidy, Ibrahim Naeem and Magdy H. Senna
Nanomaterials 2022, 12(16), 2805; https://doi.org/10.3390/nano12162805 - 16 Aug 2022
Cited by 21 | Viewed by 2705
Abstract
Electromagnetic interference (EMI) has been recognized as a new sort of pollution and can be considered as the direct interference of electromagnetic waves among electronic equipment that frequently affects their typical efficiency. As a result, shielding the electronics from this interfering radiation has [...] Read more.
Electromagnetic interference (EMI) has been recognized as a new sort of pollution and can be considered as the direct interference of electromagnetic waves among electronic equipment that frequently affects their typical efficiency. As a result, shielding the electronics from this interfering radiation has been addressed as critical issue of great interest. In this study, different hybrid nanocomposites consisting of magnetite nanoparticles (Fe3O4) and reduced graphene oxide (rGO) as (conductive/magnetic) fillers, taking into account different rGO mass ratios, were synthesized and characterized by XRD, Raman spectroscopy, TEM and their magnetic properties were assessed via VSM. The acquired fillers were encapsulated in the polyurethane foam matrix with different loading percentages (wt%) to evaluate their role in EMI shielding. Moreover, their structure, morphology, and thermal stability were investigated by SEM, FTIR, and TGA, respectively. In addition, the impact of filler loading on their final mechanical properties was determined. The obtained results revealed that the Fe3O4@rGO composites displayed superparamagnetic behavior and acceptable electrical conductivity value. The performance assessment of the conducting Fe3O4@rGO/PU composite foams in EMI shielding efficiency (SE) was investigated at the X-band (8–12) GHz, and interestingly, an optimized value of SE −33 dBw was achieved with Fe3O4@rGO at a 80:20 wt% ratio and 35 wt% filler loading in the final effective PU matrix. Thus, this study sheds light on a novel optimization strategy for electromagnetic shielding, taking into account conducting new materials with variable filler loading, composition ratio, and mechanical properties in such a way as to open the door for achieving a remarkable SE. Full article
Show Figures

Figure 1

14 pages, 5759 KiB  
Article
Study of the Influence of Magnetite Nanoparticles Supported on Thermally Reduced Graphene Oxide as Filler on the Mechanical and Magnetic Properties of Polypropylene and Polylactic Acid Nanocomposites
by Benjamin Constant-Mandiola, Héctor Aguilar-Bolados, Julian Geshev and Raul Quíjada
Polymers 2021, 13(10), 1635; https://doi.org/10.3390/polym13101635 - 18 May 2021
Cited by 12 | Viewed by 2802
Abstract
A study addressed to develop new recyclable and/or biodegradable magnetic polymeric materials is reported. The selected matrices were polypropylene (PP) and poly (lactic acid) (PLA). As known, PP corresponds to a non-polar homo-chain polymer and a commodity, while PLA is a biodegradable polar [...] Read more.
A study addressed to develop new recyclable and/or biodegradable magnetic polymeric materials is reported. The selected matrices were polypropylene (PP) and poly (lactic acid) (PLA). As known, PP corresponds to a non-polar homo-chain polymer and a commodity, while PLA is a biodegradable polar hetero-chain polymer. To obtain the magnetic nanocomposites, magnetite supported on thermally reduced graphene oxide (TrGO:Fe3O4 nanomaterial) to these polymer matrices was added. The TrGO:Fe3O4 nanomaterials were obtained by a co-precipitation method using two types of TrGO obtained by the reduction at 600 °C and 1000 °C of graphite oxide. Two ratios of 2.5:1 and 9.6:1 of the magnetite precursor (FeCl3) and TrGO were used to produce these nanomaterials. Consequently, four types of nanomaterials were obtained and characterized. Nanocomposites were obtained using these nanomaterials as filler by melt mixer method in polypropylene (PP) or polylactic acid (PLA) matrix, the filler contents were 3, 5, and 7 wt.%. Results showed that TrGO600-based nanomaterials presented higher coercivity (Hc = 8.5 Oe) at 9.6:1 ratio than TrGO1000-based nanomaterials (Hc = 4.2 Oe). PLA and PP nanocomposites containing 7 wt.% of filler presented coercivity of 3.7 and 5.3 Oe, respectively. Theoretical models were used to analyze some relevant experimental results of the nanocomposites such as mechanical and magnetic properties. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

11 pages, 2294 KiB  
Article
Improved Performance of Graphene in Heat Dissipation when Combined with an Orientated Magnetic Carbon Fiber Skeleton under Low-Temperature Thermal Annealing
by Jing Li, Rubai Lei, Jinfeng Lai, Xuyang Chen and Yang Li
Materials 2019, 12(6), 954; https://doi.org/10.3390/ma12060954 - 22 Mar 2019
Cited by 5 | Viewed by 3887
Abstract
The high thermal conductivity and stability, outstanding mechanical properties, and low weight make graphene suitable for many applications in the realm of thermal management, especially in high integration systems. Herein, we report a high-performance, low-temperature reduced graphene oxide/magnetic carbon fiber composite film. Magnetic [...] Read more.
The high thermal conductivity and stability, outstanding mechanical properties, and low weight make graphene suitable for many applications in the realm of thermal management, especially in high integration systems. Herein, we report a high-performance, low-temperature reduced graphene oxide/magnetic carbon fiber composite film. Magnetic carbon fibers were prepared using a co-precipitation method, and the graphene oxide solution was prepared using an improved Hummers’ method. The magnetic carbon fibers were orientated by magnetite and immersed in the graphene oxide solution during filtration, followed by annealing at 800 °C. The composite film exhibited improved thermal conductivity (over 600 W/m·K) and mechanical properties (tensile strength of 37.1 MPa and bending cycle of up to 8000). The experimental results illustrate that the graphene in the composite membrane provides heat transfer channels to promote in-plane thermal conductivity, while the magnetic carbon fiber acts as a scaffold to reinforce the mechanical properties and improve the quality of the graphene. Due to the synergistic effect of the graphene and magnetic carbon, this composite has wide potential applications in heat dissipation. Full article
(This article belongs to the Special Issue Electrical, Thermal and Optical Properties of Nanocarbon Materials)
Show Figures

Graphical abstract

Back to TopTop