Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = the northern continental slope of the South China Sea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9686 KiB  
Review
Gas Hydrate Distribution Influenced by Sea Floor Slide and Canyon Erosion in the Shenhu Slope, Northern South China Sea Margin
by Yuhang Huang, Xinghe Yu and Chao Fu
Processes 2025, 13(1), 193; https://doi.org/10.3390/pr13010193 - 11 Jan 2025
Cited by 1 | Viewed by 1342
Abstract
The Shenhu area, located on the northern continental slope of the South China Sea, is a confirmed gas hydrate-enriching region, but the sedimentary unit, causative mechanisms, and evolution processes of the strata that contain hydrate remain unclear. Furthermore, the recognition of bottom simulating [...] Read more.
The Shenhu area, located on the northern continental slope of the South China Sea, is a confirmed gas hydrate-enriching region, but the sedimentary unit, causative mechanisms, and evolution processes of the strata that contain hydrate remain unclear. Furthermore, the recognition of bottom simulating reflectors (BSRs) rests on qualitative description; there is no quantitative method for the characterization or three-dimensional depiction of BSRs. This review examines the sedimentary features and key factors controlling gas hydrate distribution in the region, based on high-resolution sequence stratigraphy combined with drilling and logging data from hydrate drilling projects in the Shenhu area. The main findings of this study include (1) BSRs are mainly distributed in the ridges of the continental slope and in the slip blocks of the side slope, with hydrates developing along a thin layer (10–40 m) below the hydrate stability zone, as confirmed by drilling results; (2) The distribution of BSRs is strongly influenced by the presence of gas chimneys, the migration of deepwater channels, and the erosion and sedimentation processes of canyons, all of which are directly or indirectly related to the accumulation, distribution, and formation of hydrate reservoirs; (3) The sand factor is generally less than 10%, and BSRs accumulate in areas where the sand factor is higher (4–10%). Hydrate saturation shows a positive correlation with porosity. This research also identifies the early Pleistocene erosion/resedimentation event as a key factor that controls the non-homogeneous distribution of hydrates in the region. This research highlights the role of deepwater canyon erosion and slumping processes in controlling gas hydrate formation, offering new insights into the impact of dynamic geological processes on hydrate accumulation. This study provides valuable knowledge for future hydrate exploration and global resource assessments. Full article
(This article belongs to the Special Issue Production of Energy-Efficient Natural Gas Hydrate)
Show Figures

Figure 1

22 pages, 10387 KiB  
Review
Indication of Deep-Water Gravity Flow Types by Shelf-Edge Trajectory Migration Patterns: A Case Study of the Quaternary Qiongdongnan Basin, South China Sea
by Chang Ma, Hongjun Qu and Xian Liu
J. Mar. Sci. Eng. 2024, 12(11), 2051; https://doi.org/10.3390/jmse12112051 - 12 Nov 2024
Viewed by 1289
Abstract
The shelf-edge trajectory is comprehensively controlled by tectonics, sediment supply, sea level, and climate fluctuations; its migration and evolution have a strong influence on what happens in the deep-water depositional system during the Quaternary. The shelf-edge trajectory pattern, sediment-budget partitioning into deep-water areas, [...] Read more.
The shelf-edge trajectory is comprehensively controlled by tectonics, sediment supply, sea level, and climate fluctuations; its migration and evolution have a strong influence on what happens in the deep-water depositional system during the Quaternary. The shelf-edge trajectory pattern, sediment-budget partitioning into deep-water areas, and reservoir evaluations are focused topics in international geosciences. In this paper, the Qiongdongnan Basin (QDNB) in the northern South China Sea is taken as an example to study how shelf-edge trajectory migration patterns can influence the types of deep-water gravity flow which are triggered there. Through quantitatively delineating the Quaternary shelf-edge trajectory in the QDNB, four types of shelf-edge trajectory are identified, including low angle slow rising type, medium angle rising type, high angle sharp rising type, and retrogradation-slump type. A new sequence stratigraphic framework based on the migration pattern of shelf-edge trajectory is established. There are four (third-order) sequences in the Quaternary, and several systems tracts named lowstand systems tract (LST), transgressive systems tract (TST), and highstand system tract (HST) are identified. This study indicates that the type of deep-water gravity flow can be dominated by the shelf-edge trajectory migration patterns. When the shelf-edge trajectory angle (α) ranged between 0° and 4°, the continental canyons were mostly small-scaled and shallowly incised, with multiple large-scale sandy submarine fan deposits with few MTDs found in the deep-water area. When the angle (α) ranged from 4° < α < 35°, the size and incision depth of the continental slope canyons increased, relating to frequently interbedded sandy submarine fan deposits and MTDs. When angle (α) ranged from 35° < α < 90°, only a few deeply-incised canyons were present in the continental slope; in this condition, large-scaled and long-distance MTDs frequently developed, with fewer submarine fans deposits. When angle (α) ranged from 90° < α < 150°, the valley in the slope area was virtually undeveloped, sediments in the deep-sea plain area consisted mainly of large mass transport deposits, and submarine fan development was minimal. Since the Quaternary, the temperature has been decreasing, the sea level has shown a downward trend, and the East Asian winter monsoon has significantly enhanced, resulting in an overall increase in sediment supply in the study area. However, due to the numerous rivers and rich provenance systems in the west of Hainan Island, a growing continental shelf-edge slope has developed. In the eastern part of Hainan Island, due to fewer rivers, weak provenance sources, strong tectonic activity, and the subsidence center, a type of destructive shelf-edge slope has developed. The above results have certain theoretical significance for the study of shelf-edge systems and the prediction of deep-water gravity flow deposition type. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

14 pages, 6136 KiB  
Article
Semidiurnal Internal Tide Interference in the Northern South China Sea
by Wenhui Wang, Jiahui Li and Xiaodong Huang
J. Mar. Sci. Eng. 2024, 12(5), 811; https://doi.org/10.3390/jmse12050811 - 13 May 2024
Cited by 1 | Viewed by 1248
Abstract
Multiwave interference plays a crucial role in shaping the spatial variations of internal tides. Based on a combination of in situ mooring and altimeter data, interference of semidiurnal internal tides was investigated in the northern South China Sea. Mooring observations indicate the observed [...] Read more.
Multiwave interference plays a crucial role in shaping the spatial variations of internal tides. Based on a combination of in situ mooring and altimeter data, interference of semidiurnal internal tides was investigated in the northern South China Sea. Mooring observations indicate the observed kinetic-to-potential energy ratio and group speed are both relatively lower than the theoretical values of mode-1 semidiurnal internal tides, indicating the presence of partly-standing waves. This is consistent with the altimeter result that the mooring was located at the antinode within the interference pattern formed by the superposition of the westward and southward semidiurnal internal tides from the Luzon Strait and the continental slope of the southern Taiwan Strait. However, the kinetic-to-potential energy ratio and group velocity were notably changed when an anticyclonic eddy passed by the mooring. By employing the ray-tracing method, we identified that mesoscale processes may induce a phase difference in the semidiurnal internal tides between the Luzon Strait and the continental slope of the southern Taiwan Strait. This alteration further leads to changes in the positions of nodes and antinodes within the interference pattern of the semidiurnal internal tides. Full article
(This article belongs to the Special Issue Latest Advances in Physical Oceanography—2nd Edition)
Show Figures

Figure 1

14 pages, 7347 KiB  
Article
Microstructure Turbulence Measurement in the Northern South China Sea from a Long-Range Hybrid AUV
by Yunli Nie, Xin Luan, Yan Huang, Libin Du, Dalei Song and Xiuyan Liu
Sensors 2023, 23(4), 2014; https://doi.org/10.3390/s23042014 - 10 Feb 2023
Viewed by 2066
Abstract
This study describes the development of a long-range hybrid autonomous underwater vehicle (AUV) for ocean turbulence measurement. It is a unique instrument, combining the characteristics of the conventional AUV and the buoyancy-driven glider, with a variety of flexible motion modes, such as cruise [...] Read more.
This study describes the development of a long-range hybrid autonomous underwater vehicle (AUV) for ocean turbulence measurement. It is a unique instrument, combining the characteristics of the conventional AUV and the buoyancy-driven glider, with a variety of flexible motion modes, such as cruise mode, glider mode, drift mode, and combination of multiple motion modes. The hybrid AUV was used for continuous turbulence measurement in the continental slope of the northern South China Sea in 2020. A total of ten continuous profiles were completed covering a horizontal span of 25 Km and a depth of 200 m. The hybrid AUV was operated in the combined glider and cruise mode. The hybrid AUV’s flight performance was stable and satisfied the requirement for turbulence observation. The measured velocity shears from both probes were in good agreement, and the noise-reduced shear spectra were in excellent agreement with the Nasmyth spectrum. The water column in the study area was highly stratified, with a thick thermocline. The dissipation rate (ε) varied from 1.41 × 10−10 to 4.18 × 10−7 W·kg−1. In the surface mixed layer, high values of ε (10−9∼10−8 W·kg−1) were observed toward the water surface. In the thermocline, ε was 10−9.5∼10−9 W·kg−1, which was smaller than the level of the surface mixed layer. This result was mainly because of the strong “barrier”-like thermocline, which damped the transmission of wind and heat energy from the surface mixed layer to the deep layer. Overall, this study demonstrates the utility of hybrid AUVs for collecting oceanic turbulence measurements. They are a powerful addition to traditional turbulence instruments, as they make it possible to survey large areas to obtain high-quality and high-resolution data in both vertical and horizontal directions over long durations. Full article
(This article belongs to the Special Issue Advanced Sensing Technology for Ocean Observation)
Show Figures

Figure 1

22 pages, 3892 KiB  
Article
Cenozoic Depositional Evolution and Stratal Patterns in the Western Pearl River Mouth Basin, South China Sea: Implications for Hydrocarbon Exploration
by Entao Liu, Yong Deng, Xudong Lin, Detian Yan, Si Chen and Xianbin Shi
Energies 2022, 15(21), 8050; https://doi.org/10.3390/en15218050 - 29 Oct 2022
Cited by 4 | Viewed by 2320
Abstract
Investigating the deposition evolution and stratal stacking patterns in continental rift basins is critical not only to better understand the mechanism of basin fills but also to reveal the enrichment regularity of hydrocarbon reservoirs. The Pearl River Mouth Basin (PRMB) is a petroliferous [...] Read more.
Investigating the deposition evolution and stratal stacking patterns in continental rift basins is critical not only to better understand the mechanism of basin fills but also to reveal the enrichment regularity of hydrocarbon reservoirs. The Pearl River Mouth Basin (PRMB) is a petroliferous continental rift basin located in the northern continental shelf of the South China Sea. In this study, the depositional evolution process and stacking pattern of the Zhu III Depression, western PRMB were studied through the integration of 3D seismic data, core data, and well logs. Five types of depositional systems formed from the Eocene to the Miocene, including the fan delta, meandering river delta, tidal flat, lacustrine system, and neritic shelf system. The representative depositional systems changed from the proximal fan delta and lacustrine system in the Eocene–early Oligocene, to the tidal flat and fan delta in the late Oligocene, and then the neritic shelf system in the Miocene. The statal stacking pattern varied in time and space with a total of six types of slope break belts developed. The diversity of sequence architecture results from the comprehensive effect of tectonic activities, sediment supply, sea/lake level changes, and geomorphic conditions. In addition, our results suggest that the types of traps are closely associated with stratal stacking patterns. Structural traps were developed in the regions of tectonic slope breaks, whereas lithological traps occurred within sedimentary slope breaks. This study highlights the diversity and complexity of sequence architecture in the continental rift basin, and the proposed hydrocarbon distribution patterns are applicable to reservoir prediction in the PRMB and the other continental rift basins. Full article
(This article belongs to the Special Issue Natural Gas Hydrate and Deep-Water Hydrocarbon Exploration)
Show Figures

Figure 1

17 pages, 13621 KiB  
Article
Thermohaline Dynamics in the Northern Continental Slope of the South China Sea: A Case Study in the Qiongdongnan Slope
by Zhiguo He, Wenlin Hu, Li Li, Thomas Pähtz and Jianlong Li
J. Mar. Sci. Eng. 2022, 10(9), 1221; https://doi.org/10.3390/jmse10091221 - 1 Sep 2022
Cited by 2 | Viewed by 2294
Abstract
Understanding the marine hydro-thermohaline environment is essential for terrestrial meteorology and the coastal ecosystem. Here, we provide insight into the hydro-thermohaline environment at the Qiongdongnan continental slope of the northern South China Sea and the mechanism controlling it, with focus on its short-term [...] Read more.
Understanding the marine hydro-thermohaline environment is essential for terrestrial meteorology and the coastal ecosystem. Here, we provide insight into the hydro-thermohaline environment at the Qiongdongnan continental slope of the northern South China Sea and the mechanism controlling it, with focus on its short-term characteristics. We employ a well-validated three-dimensional unstructured-grid-based Finite Volume Coastal Ocean Model (FVCOM) to analyze the spatial-temporal behavior of its hydro-thermohaline structures and to quantify the transport fluxes over a full tidal period. The analysis reveals a two-layer flow structure with directionally oppositely moving layers in the along-isobaths direction. Furthermore, transport patterns undergo periodic changes. During the spring tide, the downslope (along-isobaths) transport of water/heat/salt is approximately 119%/70%/120% higher (62%/62%/62% lower) than during the neap tide. From analyzing the different terms in the thermohaline balance equation, we find that the main dynamic factors controlling heat transport over a tidal period are the gravitational convention and the mean flow, while the salt transport is only dominated by the mean flow. The data of the short-term thermohaline evolution of the QDNS provided in this study may be of use for future studies of the northern SCS, including its marine ecology and marine fisheries. Full article
(This article belongs to the Special Issue Ocean Dynamics: Numerical Models and Applications)
Show Figures

Figure 1

13 pages, 3848 KiB  
Article
Rare Earth Element Distributions in Continental Shelf Sediment, Northern South China Sea
by Qian Ge, Z. George Xue and Fengyou Chu
Water 2020, 12(12), 3540; https://doi.org/10.3390/w12123540 - 16 Dec 2020
Cited by 14 | Viewed by 5136
Abstract
A total of 388 surface sediment samples taken from the northern South China Sea (SCS) continental shelf were analyzed to characterize the signature of their rare earth elements (REEs). The average REEs concentration was 192.94 μg/g, with a maximum of 349.07 μg/g, and [...] Read more.
A total of 388 surface sediment samples taken from the northern South China Sea (SCS) continental shelf were analyzed to characterize the signature of their rare earth elements (REEs). The average REEs concentration was 192.94 μg/g, with a maximum of 349.07 μg/g, and a minimum of 32.97 μg/g. The chondrite-normalized REEs pattern exhibits a remarkably light REEs accumulation, a relatively flat heavy REEs pattern, and a negative Eu anomaly. We subdivided the study area into three zones using the characteristics of REEs and statistical characteristics. Zone I: continental shelf off western Guangdong Province. Here, the sediment provenance is mainly river-derived from the Pearl River, Taiwanese rivers, and those in the adjacent area. Zone II: Qiongzhou Strait and Leizhou Peninsula. Here, the sediment provenance consists of the Qiongzhou Strait and the Hainan Island. Zone III: Hainan Island and SCS slope sediments are dominated. The REEs compositions are mainly controlled by source rock properties, hydrodynamic conditions, and an intensity of chemical weathering. We reconstructed the sediment dispersal and transport route using the REEs compositions, grain size, and other geochemical characteristics throughout the study area. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

Back to TopTop