Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = the WAA-LSTM model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6378 KB  
Article
Comparative Analysis of Ensemble Machine Learning Methods for Alumina Concentration Prediction
by Xiang Xia, Xiangquan Li, Yanhong Wang and Jianheng Li
Processes 2025, 13(8), 2365; https://doi.org/10.3390/pr13082365 - 25 Jul 2025
Viewed by 796
Abstract
In the aluminum electrolysis production process, the traditional cell control method based on cell voltage and series current can no longer meet the goals of energy conservation, consumption reduction, and digital-intelligent transformation. Therefore, a new digital cell control technology that is centrally dependent [...] Read more.
In the aluminum electrolysis production process, the traditional cell control method based on cell voltage and series current can no longer meet the goals of energy conservation, consumption reduction, and digital-intelligent transformation. Therefore, a new digital cell control technology that is centrally dependent on various process parameters has become an urgent demand in the aluminum electrolysis industry. Among them, the real-time online measurement of alumina concentration is one of the key data points for implementing such technology. However, due to the harsh production environment and limitations of current sensor technologies, hardware-based detection of alumina concentration is difficult to achieve. To address this issue, this study proposes a soft-sensing model for alumina concentration based on a long short-term memory (LSTM) neural network optimized by a weighted average algorithm (WAA). The proposed method outperforms BiLSTM, CNN-LSTM, CNN-BiLSTM, CNN-LSTM-Attention, and CNN-BiLSTM-Attention models in terms of predictive accuracy. In comparison to LSTM models optimized using the Grey Wolf Optimizer (GWO), Harris Hawks Optimization (HHO), Optuna, Tornado Optimization Algorithm (TOC), and Whale Migration Algorithm (WMA), the WAA-enhanced LSTM model consistently achieves significantly better performance. This superiority is evidenced by lower MAE and RMSE values, along with higher R2 and accuracy scores. The WAA-LSTM model remains stable throughout the training process and achieves the lowest final loss, further confirming the accuracy and superiority of the proposed approach. Full article
Show Figures

Figure 1

Back to TopTop