Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = tetrahydrodemethoxycurcumin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4958 KiB  
Article
Comparative Study of the Effects of Curcuminoids and Tetrahydrocurcuminoids on Melanogenesis: Role of the Methoxy Groups
by Shilpi Goenka
Future Pharmacol. 2024, 4(1), 256-278; https://doi.org/10.3390/futurepharmacol4010016 - 8 Mar 2024
Viewed by 3154
Abstract
Curcuminoids are naturally occurring yellow-colored compounds that, when hydrogenated to remove their conjugated double bond, become colorless and are referred to as tetrahydrocurcuminoids. Curcuminoids consist of pure curcumin (PC) in major amounts and demethoxycurcumin (DC) and bisdemethoxycurcumin (BDC) in minor amounts. Tetrahydrocurcuminoids similarly [...] Read more.
Curcuminoids are naturally occurring yellow-colored compounds that, when hydrogenated to remove their conjugated double bond, become colorless and are referred to as tetrahydrocurcuminoids. Curcuminoids consist of pure curcumin (PC) in major amounts and demethoxycurcumin (DC) and bisdemethoxycurcumin (BDC) in minor amounts. Tetrahydrocurcuminoids similarly consist mainly of tetrahydrocurcumin (THC), along with minor amounts of tetrahydrodemethoxycurcumin (THDC) and tetrahydrobisdemethoxycurcumin (THBDC). Previous studies have shown the inhibitory effects of PC, DC, and BDC on melanin production, but there are contradictory findings about THC. In addition, there are currently no reports on the effects of THDC and THBDC on melanogenesis. Our previous report described that, in contrast to PC, which suppressed melanin production, THC stimulated melanin production in B16F10 and MNT-1 cells; this effect was ascribed to the loss of the conjugated heptadiene moiety of PC. However, whether this finding can be generalized to the two curcumin derivatives (DC and BDC), such that THDC and THBDC might also stimulate melanogenesis, has not been addressed. Herein, a comparative study of six curcumin derivatives (PC, DC, BDC, THC, THDC, and THBDC) was undertaken to identify their effects on melanogenesis with the goal of elucidating the structure–activity relationships (SARs) focused on assessing the two regions of the parent curcumins’ structure: (i) the hydrogenation of the two double bonds bridging the phenyl rings to the β-diketone moiety, and (ii) the effect of the ortho-methoxy substituent (-OCH3) on the two phenyl rings. To determine the direct effects of the six compounds, antioxidant activity and tyrosinase activity were assessed in cell-free systems before cellular experiments utilizing the B16F10 mouse melanoma cells, MNT-1 human melanoma cells, and primary cells. Evaluations were made on cytotoxicity, melanin concentration, and cellular tyrosinase activity. The results showed that BDC inhibited melanogenesis in B16F10 and MNT-1 cells. However, it was ineffective in primary human melanocytes, while THBDC continued to exhibit anti-melanogenic capacity in normal human melanocytes. Moreover, these findings provide a novel perspective into the role of the methoxy groups of PC on the biological effects of melanogenesis and also confirm that the removal of the conjugated double bonds abolishes the anti-melanogenic capacity of PC and DC only, but not BDC, as THBDC maintained anti-melanogenic activity that was greater than BDC. However, the outcome is contingent upon the specific kind of cell involved. To the best of our knowledge, this work presents novel findings indicating that the anti-melanogenic capacity of the colored BDC is not only intact but enhanced after its hydrogenation as observed in THBDC. The findings show potential for using colorless THBDC as a pharmacological candidate to diminish the increased pigmentation characteristic of skin hyperpigmentation disorders. Future pharmacological therapeutics that incorporate pure THBDC or THBDC-enriched extracts, which retain both a colorless appearance and potent anti-melanogenic activity, can be applied to compounds for anti-melanoma therapeutics where the demand for nontoxic novel molecules is desired for established efficacies. Full article
Show Figures

Graphical abstract

11 pages, 466 KiB  
Article
Pharmacokinetics-Driven Evaluation of the Antioxidant Activity of Curcuminoids and Their Major Reduced Metabolites—A Medicinal Chemistry Approach
by Gábor Girst, Sándor B. Ötvös, Ferenc Fülöp, György T. Balogh and Attila Hunyadi
Molecules 2021, 26(12), 3542; https://doi.org/10.3390/molecules26123542 - 10 Jun 2021
Cited by 14 | Viewed by 3590
Abstract
Curcuminoids are the main bioactive components of the well-known Asian spice and traditional medicine turmeric. Curcuminoids have poor chemical stability and bioavailability; in vivo they are rapidly metabolized to a set of bioreduced derivatives and/or glucuronide and sulfate conjugates. The reduced curcuminoid metabolites [...] Read more.
Curcuminoids are the main bioactive components of the well-known Asian spice and traditional medicine turmeric. Curcuminoids have poor chemical stability and bioavailability; in vivo they are rapidly metabolized to a set of bioreduced derivatives and/or glucuronide and sulfate conjugates. The reduced curcuminoid metabolites were also reported to exert various bioactivities in vitro and in vivo. In this work, we aimed to perform a comparative evaluation of curcuminoids and their hydrogenated metabolites from a medicinal chemistry point of view, by determining a set of key pharmacokinetic parameters and evaluating antioxidant potential in relation to such properties.Reduced metabolites were prepared from curcumin and demethoxycurcumin through continuous-flow hydrogenation. As selected pharmacokinetic parameters, kinetic solubility, chemical stability, metabolic stability in human liver microsomes, and parallel artificial membrane permeability assay (PAMPA)-based gastrointestinal and blood-brain barrier permeability were determined. Experimentally determined logP for hydrocurcumins in octanol-water and toluene-water systems provided valuable data on the tendency for intramolecular hydrogen bonding by these compounds. Drug likeness of the compounds were further evaluated by a in silico calculations. Antioxidant properties in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbance capacity (ORAC) assays were comparatively evaluated through the determination of ligand lipophilic efficiency (LLE). Our results showed dramatically increased water solubility and chemical stability for the reduced metabolites as compared to their corresponding parent compound. Hexahydrocurcumin was found the best candidate for drug development based on a complex pharmacokinetical comparison and high LLE values for its antioxidant properties. Development of tetrahydrocurcumin and tetrahydro-demethoxycurcumin would be limited by their very poor metabolic stability, therefore such an effort would rely on formulations bypassing first-pass metabolism. Full article
Show Figures

Figure 1

Back to TopTop