Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = terrestrial filamentous green microalgae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4141 KiB  
Article
Barranca variabilis sp. nov.—A New Terrestrial Alga of the Genus Barranca (Chaetophorales, Chlorophyta) from the Baikal Region (Russia)
by Irina N. Egorova, Nina V. Kulakova, Olga N. Boldina and Galina S. Tupikova
Diversity 2023, 15(4), 583; https://doi.org/10.3390/d15040583 - 21 Apr 2023
Cited by 2 | Viewed by 2981
Abstract
Filamentous green chaetophoralean algae are distributed mainly in aquatic ecosystems, less known from terrestrial habitats. Many of them have a complicated thalli and complex life cycles that make it difficult to determine these organisms by morphology. Description of new representatives of the Chaetophorales [...] Read more.
Filamentous green chaetophoralean algae are distributed mainly in aquatic ecosystems, less known from terrestrial habitats. Many of them have a complicated thalli and complex life cycles that make it difficult to determine these organisms by morphology. Description of new representatives of the Chaetophorales continues. In this study, we have explored the filamentous green alga IRK–A 341 from soil of the Baikal Region by light and electron microscopy along with molecular phylogeny. Based on the results of morphological, ecological, and molecular phylogenetic analyses (18S–28S rDNA, tufA), we described the studied alga as the new species, Barranca variabilis sp. nov. The study complements the data on the diversity of soils green filamentous algae, and their biogeography. For the first time, the data on the structure of the cell walls and the cell ultrastructure of Barranca were established. The information on the morphology of the reproductive and resting cells is updated. Full article
(This article belongs to the Special Issue Biodiversity and Biogeography of Terrestrial Algae and Cyanobacteria)
Show Figures

Figure 1

18 pages, 6813 KiB  
Article
Preparation and Characterization of Microalgae Styrene-Butadiene Composites Using Chlorella vulgaris and Arthrospira platensis Biomass
by Marius Bumbac, Cristina Mihaela Nicolescu, Radu Lucian Olteanu, Stefan Cosmin Gherghinoiu, Costel Bumbac, Olga Tiron, Elena Elisabeta Manea, Cristiana Radulescu, Laura Monica Gorghiu, Sorina Geanina Stanescu, Bogdan Catalin Serban and Octavian Buiu
Polymers 2023, 15(6), 1357; https://doi.org/10.3390/polym15061357 - 8 Mar 2023
Cited by 10 | Viewed by 2985
Abstract
The food industry is a high consumer of polymer packing materials, sealing materials, and engineering components used in production equipment. Biobased polymer composites used in the food industry are obtained by incorporating different biogenic materials into the structure of a base polymer matrix. [...] Read more.
The food industry is a high consumer of polymer packing materials, sealing materials, and engineering components used in production equipment. Biobased polymer composites used in the food industry are obtained by incorporating different biogenic materials into the structure of a base polymer matrix. Renewable resources such as microalgae, bacteria, and plants may be used as biogenic materials for this purpose. Photoautotrophic microalgae are valuable microorganisms that are able to harvest sunlight energy and capture CO2 into biomass. They are characterized by their metabolic adaptability to environmental conditions, higher photosynthetic efficiency than terrestrial plants, and natural macromolecules and pigments. The flexibility of microalgae to grow in either low-nutrient or nutrient-rich environments (including wastewater) has led to the attention for their use in various biotechnological applications. Carbohydrates, proteins, and lipids are the main three classes of macromolecular compounds contained in microalgal biomass. The content in each of these components depends on their growth conditions. In general, proteins represent 40–70% of microalgae dry biomass, followed by carbohydrates (10–30%) and lipids (5–20%). A distinctive feature of microalgae cells is the presence of light-harvesting compounds such as photosynthetic pigments carotenoids, chlorophylls, and phycobilins, which are also receiving growing interest for applications in various industrial fields. The study comparatively reports on polymer composites obtained with biomass made of two species of green microalgae: Chlorella vulgaris and filamentous, gram-negative cyanobacterium Arthrospira. Experiments were conducted to reach an incorporation ratio of the biogenic material into the matrix in the 5–30% range, and the resulting materials were characterized by their mechanical and physicochemical properties. Full article
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
Different Geographic Strains of Dinoflagellate Karlodinium veneficum Host Highly Diverse Fungal Community and Potentially Serve as Possible Niche for Colonization of Fungal Endophytes
by Yunyan Deng, Kui Wang, Zhangxi Hu, Qiang Hu and Yingzhong Tang
Int. J. Mol. Sci. 2023, 24(2), 1672; https://doi.org/10.3390/ijms24021672 - 14 Jan 2023
Cited by 5 | Viewed by 2654
Abstract
In numerous studies, researchers have explored the interactions between fungi and their hosting biota in terrestrial systems, while much less attention has been paid to the counterpart interactions in aquatic, and particularly marine, ecosystems. Despite the growing recognition of the potential functions of [...] Read more.
In numerous studies, researchers have explored the interactions between fungi and their hosting biota in terrestrial systems, while much less attention has been paid to the counterpart interactions in aquatic, and particularly marine, ecosystems. Despite the growing recognition of the potential functions of fungi in structuring phytoplankton communities, the current insights were mostly derived from phytoplankton hosts, such as diatoms, green microalgae, and cyanobacteria. Dinoflagellates are the second most abundant group of phytoplankton in coastal marine ecosystems, and they are notorious for causing harmful algal blooms (HABs). In this study, we used high-throughput amplicon sequencing to capture global snapshots of specific fungal assemblages associated with laboratory-cultured marine dinoflagellate. We investigated a total of 13 clonal cultures of the dinoflagellate Karlodinium veneficum that were previously isolated from 5 geographic origins and have been maintained in our laboratory from several months to more than 14 years. The total recovered fungal microbiome, which consisted of 349 ASVs (amplicon sequencing variants, sequences clustered at a 100% sequence identity), could be assigned to 4 phyla, 18 classes, 37 orders, 65 families, 97 genera, and 131 species. The fungal consortium displayed high diversity and was dominated by filamentous fungi and ascomycetous and basidiomycetous yeasts. A core set of three genera among all the detected fungi was constitutively present in the K. veneficum strains isolated from geographically distant regions, with the top two most abundant genera, Thyridium and Pseudeurotium, capable of using hydrocarbons as the sole or major source of carbon and energy. In addition, fungal taxa previously documented as endophytes in other hosts were also found in all tested strains of K. veneficum. Because host–endophyte interactions are highly variable and strongly case-dependent, these fungal taxa were not necessarily genuine endosymbionts of K. veneficum; instead, it raised the possibility that dinoflagellates could potentially serve as an alternative ecological niche for the colonization of fungal endophytes. Our findings lay the foundation for further investigations into the potential roles or functions of fungi in the regulation of the growth dynamics and HABs of marine dinoflagellates in the field. Full article
(This article belongs to the Special Issue Plant-Microbe Interactions 2.0)
Show Figures

Figure 1

Back to TopTop