Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = telomere dysfunction-induced foci (TIFs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8334 KiB  
Article
A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling
by Merve Yilmaz, Sibel Goksen, Ilgen Mender, Gunes Esendagli, Sefik Evren Erdener, Alessandra Ahmed, Ates Kutay Tenekeci, Larisa L. Birichevskaya, Sergei M. Gryaznov, Jerry W. Shay and Z. Gunnur Dikmen
Biomolecules 2024, 14(12), 1616; https://doi.org/10.3390/biom14121616 - 18 Dec 2024
Viewed by 1530
Abstract
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the [...] Read more.
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the design, synthesis, and evaluation of novel bimodular conjugate molecules combining telomere-targeting nucleoside analogs and phosphatidyl diglyceride groups. Among them, dihexanoyl-phosphatidyl-THIO (diC6-THIO) showed high anticancer activity with sub-µM EC50 values in vitro across various cancer cell lines. In mouse colorectal cancer models, diC6-THIO demonstrated strong anticancer effects alone and in combination with PD1/PD-L1 inhibitors. Administration of this compound resulted in the efficient formation of Telomere dysfunction Induced Foci (TIFs) in vitro, indicating an on-target, telomerase-mediated telomere-modifying mechanism of action for the molecule. Systemic treatment also activated CD4+ and CD8+ T cells while reducing regulatory T cells, indicating immune system enhancement. Notably, diC6-THIO exhibits an improved solubility profile while maintaining comparable anticancer properties, further supporting its potential as a promising therapeutic candidate. These findings highlight diC6-THIO as a promising telomere-targeting prodrug with dual effects on telomere modification and immune activation. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment (3rd Edition))
Show Figures

Figure 1

13 pages, 18852 KiB  
Article
Heat-Killed Staphylococcus aureus Induces Bone Mass Loss through Telomere Erosion
by Songyun Deng, Mankai Yang, Jianwen Su, Naiqian Cui, Siyuan Wu, Guangyan Zhang, Lei Wang, Yilong Hou, Yu Chai and Bin Yu
Int. J. Mol. Sci. 2023, 24(4), 3179; https://doi.org/10.3390/ijms24043179 - 6 Feb 2023
Cited by 3 | Viewed by 2632
Abstract
The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen [...] Read more.
The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen and to explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of HKSA caused bone loss in mice. Further exploration found that HKSA caused cellular senescence, telomere length shortening, and telomere dysfunction-induced foci (TIF) in limb bones. As a well-known telomerase activator, cycloastragenol (CAG) significantly alleviated HKSA-induced telomere erosion and bone loss. These results suggested that telomere erosion in bone marrow cells is a possible mechanism of HKSA-induced bone loss. CAG may protect against HKSA-induced bone loss by alleviating telomere erosion in bone marrow cells. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 2562 KiB  
Article
Natural Product Library Screens Identify Sanguinarine Chloride as a Potent Inhibitor of Telomerase Expression and Activity
by Siyu Yan, Song Lin, Kexin Chen, Shanshan Yin, Haoyue Peng, Nanshuo Cai, Wenbin Ma, Zhou Songyang and Yan Huang
Cells 2022, 11(9), 1485; https://doi.org/10.3390/cells11091485 - 28 Apr 2022
Cited by 10 | Viewed by 3262
Abstract
Reverse transcriptase hTERT is essential to telomerase function in stem cells, as well as in 85–90% of human cancers. Its high expression in stem cells or cancer cells has made telomerase/hTERT an attractive therapeutic target for anti-aging and anti-tumor applications. In this study, [...] Read more.
Reverse transcriptase hTERT is essential to telomerase function in stem cells, as well as in 85–90% of human cancers. Its high expression in stem cells or cancer cells has made telomerase/hTERT an attractive therapeutic target for anti-aging and anti-tumor applications. In this study, we screened a natural product library containing 800 compounds using an endogenous hTERT reporter. Eight candidates have been identified, in which sanguinarine chloride (SC) and brazilin (Braz) were selected due to their leading inhibition. SC could induce an acute and strong suppressive effect on the expression of hTERT and telomerase activity in multiple cancer cells, whereas Braz selectively inhibited telomerase in certain types of cancer cells. Remarkably, SC long-term treatment could cause telomere attrition and cell growth retardation, which lead to senescence features in cancer cells, such as the accumulation of senescence-associated β-galactosidase (SA-β-gal)-positive cells, the upregulation of p16/p21/p53 pathways and telomere dysfunction-induced foci (TIFs). Additionally, SC exhibited excellent capabilities of anti-tumorigenesis, both in vitro and in vivo. In the mechanism, the compound down-regulated several active transcription factors including p65, a subunit of NF-κB complex, and reintroducing p65 could alleviate its suppression of the hTERT/telomerase. Moreover, SC could directly bind hTERT and inhibit telomerase activity in vitro. In conclusion, we identified that SC not only down-regulates the hTERT gene’s expression, but also directly affects telomerase/hTERT. The dual function makes this compound an attractive drug candidate for anti-tumor therapy. Full article
(This article belongs to the Special Issue Controversies and Recent Advances in Senescence and Aging)
Show Figures

Figure 1

23 pages, 2159 KiB  
Review
Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis
by Xiaojing Hong, Lihui Wang, Kexiong Zhang, Jun Liu and Jun-Ping Liu
Cells 2022, 11(5), 877; https://doi.org/10.3390/cells11050877 - 3 Mar 2022
Cited by 19 | Viewed by 7033
Abstract
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial [...] Read more.
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-β signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence. Full article
(This article belongs to the Special Issue Controversies and Recent Advances in Senescence and Aging)
Show Figures

Figure 1

25 pages, 5078 KiB  
Article
A Role for Human DNA Polymerase λ in Alternative Lengthening of Telomeres
by Elisa Mentegari, Federica Bertoletti, Miroslava Kissova, Elisa Zucca, Silvia Galli, Giulia Tagliavini, Anna Garbelli, Antonio Maffia, Silvia Bione, Elena Ferrari, Fabrizio d’Adda di Fagagna, Sofia Francia, Simone Sabbioneda, Liuh-Yow Chen, Joachim Lingner, Valerie Bergoglio, Jean-Sébastien Hoffmann, Ulrich Hübscher, Emmanuele Crespan and Giovanni Maga
Int. J. Mol. Sci. 2021, 22(5), 2365; https://doi.org/10.3390/ijms22052365 - 27 Feb 2021
Cited by 3 | Viewed by 4367
Abstract
Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the [...] Read more.
Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

Back to TopTop