Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = technogenic zirconium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5665 KB  
Article
The Impact of Electron Beam Melting on the Purification of Recycled Zirconium
by Katia Vutova, Vladislava Stefanova, Evgeniy Manoilov, Irena Mihailova, Maria Naplatanova and Peter Iliev
Metals 2025, 15(11), 1273; https://doi.org/10.3390/met15111273 - 20 Nov 2025
Viewed by 380
Abstract
Zirconium belongs to the group of critical rare metals and is primarily used in industry. Its most important application, as the basis for specialized alloys, is in nuclear reactors, owing to its exceptionally very low thermal neutron absorption cross-section. Based on theoretical and [...] Read more.
Zirconium belongs to the group of critical rare metals and is primarily used in industry. Its most important application, as the basis for specialized alloys, is in nuclear reactors, owing to its exceptionally very low thermal neutron absorption cross-section. Based on theoretical and experimental investigation, the potential for removing metallic (Al, Ti, Hf, V, Fe, Cr, Cu, Ni) and non-metallic (O, C) impurities from technogenic zirconium during electron beam melting (EBM) was assessed. The influence of temperature (ranging from 2350 K to 2750 K) and refining duration (10, 15, and 20 min) under vacuum conditions (1 × 10−3 Pa) was investigated concerning the degree of impurity removal, the microstructure, and the micro-hardness of the resulting ingots. It was established that under optimal EBM conditions for technogenic zirconium (T = 2750 K, τ = 20 min), the total refining efficiency reached approximately 87%, and the achieved Zr purity was 99.756%. Among the impurities present in the technogenic zirconium, the lowest removal efficiencies were recorded for Al (54.90%) and Cr (88.89%), with the lower refining efficiency for Al influencing the microstructure and micro-hardness of the ingots produced after EBM. Full article
(This article belongs to the Special Issue Metal Extraction and Smelting Technology)
Show Figures

Figure 1

15 pages, 5834 KB  
Article
Inorganic Sorbents for Wastewater Treatment from Radioactive Contaminants
by Natalya A. Nekrasova, Vitaly V. Milyutin, Victor O. Kaptakov and Evgeny A. Kozlitin
Inorganics 2023, 11(3), 126; https://doi.org/10.3390/inorganics11030126 - 16 Mar 2023
Cited by 20 | Viewed by 3635
Abstract
The article presents the distribution coefficient (Kd) values of 137Cs and 90Sr tracer radionuclides in solutions of sodium and calcium salts for a wide range of commercially available inorganic sorbents: natural and synthetic aluminosilicates, manganese, titanium and zirconium oxyhydrates, [...] Read more.
The article presents the distribution coefficient (Kd) values of 137Cs and 90Sr tracer radionuclides in solutions of sodium and calcium salts for a wide range of commercially available inorganic sorbents: natural and synthetic aluminosilicates, manganese, titanium and zirconium oxyhydrates, titanium and zirconium phosphates, titanosilicates of alkali metals, and ferrocyanides of transition metals. The results were obtained using a standard technique developed by the authors for evaluating the efficiency of various sorption materials towards cesium and strontium radionuclides. It was shown that bentonite clays and natural and synthetic zeolites are the best for decontaminating low-salt natural water from cesium radionuclides, and ferrocyanide sorbents are the choice for decontaminating high-salt-bearing solutions. The manganese (III, IV) oxyhydrate-based MDM sorbent is the most effective for removing strontium from natural water; for seawater, the barium silicate-based SRM-Sr sorbent is the first-in-class. Results of the study provide a possibility of making a reasonable choice of sorbents for the most effective treatment of natural water and technogenic aqueous waste contaminated with cesium and strontium radionuclides. Full article
(This article belongs to the Special Issue Inorganic Sorbents in Water Treatment)
Show Figures

Graphical abstract

Back to TopTop