Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = tapered-wedge short stem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2460 KiB  
Article
A Customized Distribution of the Coefficient of Friction of the Porous Coating in the Short Femoral Stem Reduces Stress Shielding
by Konstantina Solou, Anna Vasiliki Solou, Irini Tatani, John Lakoumentas, Konstantinos Tserpes and Panagiotis Megas
Prosthesis 2024, 6(6), 1310-1324; https://doi.org/10.3390/prosthesis6060094 - 31 Oct 2024
Viewed by 1163
Abstract
Stress shielding and aseptic loosening have been identified as adverse effects of short-stem total hip arthroplasty resulting in hardware failure. However, there is a gap in research regarding the impact of stress shielding in customized porous coatings. The purpose of this study was [...] Read more.
Stress shielding and aseptic loosening have been identified as adverse effects of short-stem total hip arthroplasty resulting in hardware failure. However, there is a gap in research regarding the impact of stress shielding in customized porous coatings. The purpose of this study was to optimize the distribution of the coefficients of friction in the porous coating of a metaphyseal femoral stem to minimize stress shielding. Static structural analysis of an implanted short, tapered-wedge stem with a titanium porous coating was performed with the use of Analysis System Mechanical Software under axial loading. To limit computational time, we randomly sampled only 500 of the possible combinations of coefficients of friction. Results indicate that the coefficient of friction in the distal lateral porous coating significantly affected the mid-distal medial femoral surface and lateral femoral surface. The resultant increased proximal strains resulted from an increased coefficient of friction in lateral porous coating and a reduction in the coefficient of friction in medial mid-distal coating. These findings suggest that a customized porous coating distribution may produce strain patterns that are biomechanically closer to intact bone, thereby reducing stress shielding in short femoral stems. Full article
(This article belongs to the Special Issue State of Art in Hip, Knee and Shoulder Replacement (Volume 2))
Show Figures

Figure 1

12 pages, 5084 KiB  
Article
Identification of Essential Features in Developing a Novel Femoral Stem Reflecting Anatomical Features of East Asian Population: A Morphological Study
by Ji Hoon Bahk, Seung-Beom Han, Kee Hyung Rhyu, Jeong Joon Yoo, Seung-Jae Lim, Kwan Kyu Park, Sang-Min Kim and Young Wook Lim
J. Clin. Med. 2024, 13(20), 6030; https://doi.org/10.3390/jcm13206030 - 10 Oct 2024
Cited by 1 | Viewed by 1352
Abstract
Background: Recent advancements in hip arthroplasty aim to enhance the stability, longevity, and functionality of femoral implants. However, the distal fitting of femoral stems, often caused by metaphyseal–diaphyseal mismatch, remains a significant issue, particularly in patients with Dorr type A femora. Such [...] Read more.
Background: Recent advancements in hip arthroplasty aim to enhance the stability, longevity, and functionality of femoral implants. However, the distal fitting of femoral stems, often caused by metaphyseal–diaphyseal mismatch, remains a significant issue, particularly in patients with Dorr type A femora. Such mismatches can result in suboptimal implant performance, leading to potential complications. This study focuses on evaluating the anatomical compatibility of five representative single-tapered wedge mid–short stems with the mediolateral (ML) anatomy of the proximal femur in an East Asian population, where these mismatches are often more pronounced. Methods: A total of 742 patients from two hospitals, all of whom underwent unilateral primary total hip arthroplasty, were included in the study. The contralateral proximal femur was confirmed to have normal anatomy in each patient. Hip anteroposterior radiographs were used for measurements, which were standardized in conjunction with CT images. Key anatomical parameters were measured, including proximal and distal medial–lateral canal dimensions, vertical offset, and medial offset. Five femoral stem designs—Tri-lock®, Taperloc®, Anthology®, Accolade II®, and Fit®—were evaluated. R programming was employed for a detailed fit analysis to match stem sizes with patient anatomy, categorizing the fit as proximal, simultaneous proximal–distal, or distal engagement. Results: Among the femoral stems analyzed, the Fit® stem demonstrated the closest alignment with the regression line for ML widths in the study population (slope = 0.69; population ML slope = 0.38). This was followed by Accolade II®, which had a slope of 0.83. In terms of offset options, the Accolade II® offered the largest offset coverage, making it particularly suitable for this population. The fit analysis revealed that the Fit® stem had the highest suitable fit rate (90.56%), followed by Accolade II® (73.04%). Taperloc®, Anthology®, and Tri-lock® had similar fit rates of approximately 59%. Overall, optimal results were obtained for 92.05% of the population in the automated fitting trial, regardless of the product type. Conclusions: When designing modern cementless femoral stems intended for press-fit fixation, it is crucial to account for the anatomical variations specific to the target population. In this study, Fit® and Accolade II® femoral components demonstrated superior compatibility with the femoral anatomy of the East Asian population, particularly in those with a higher incidence of Dorr type A femora. These stems, characterized by slimmer distal dimensions and high-offset options, appear to minimize metaphyseal–diaphyseal mismatch and associated complications. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

9 pages, 1241 KiB  
Article
Relationship between Stress Shielding and Optimal Femoral Canal Contact Regions for Short, Tapered-Wedge Stem Analyzed by 2D and 3D Systems in Total Hip Arthroplasty
by Takashi Maeda, Masaki Nakano, Yukio Nakamura, Takashige Momose, Atsushi Sobajima, Jun Takahashi, Katsuya Nakata and Masashi Nawata
J. Clin. Med. 2023, 12(9), 3138; https://doi.org/10.3390/jcm12093138 - 26 Apr 2023
Cited by 4 | Viewed by 2402
Abstract
Although tapered-wedge short stem has been widely employed with its availability for minimally invasive surgeries in total hip arthroplasty (THA), post-operative stress shielding matter remains unresolved in cementless procedures. This study aimed to clarify the most optimal femoral canal contact regions of the [...] Read more.
Although tapered-wedge short stem has been widely employed with its availability for minimally invasive surgeries in total hip arthroplasty (THA), post-operative stress shielding matter remains unresolved in cementless procedures. This study aimed to clarify the most optimal femoral canal contact regions of the stem design taking stress shielding incidence into consideration. This investigation included 60 joints from 60 patients (mean age at operation: 65.9 years), of which follow-up duration after primary THA had been more than 2 years. Frequencies of spot welds, subsidence, and stress shielding were examined 2 years after surgery. The most suitable femoral canal contact regions were evaluated by plain radiograph (2D) and 3D-computed tomography analyses according to Nakata’s division for fitting manners. Spot welds were observed in 38 cases (63.3%), and no subsidence case was seen. Respective number of stress shielding cases, based on Engh’s classification, categorized as degree 0, 1, and 2, were 2 (3.3%), 31 (51.7%), and 27 (45.0%), while no cases for degree 3 or 4 were found. When assessed by 3D fitting analysis, 27 cases of stress shielding degree 2 were constituted by 13/42 cases of mediolateral (ML) fit, 2/4 cases of flare fit, and 12/14 cases of multi point fit. In 42 cases of ML fitting, stem contact rate of the most proximedial region in stress shielding degree 0 and 1 was significantly higher compared to stress shielding degree 2 cases. Meanwhile, the rates of distal regions were significantly lower or absent in stress shielding degree 0 and 1 cases. The initial fixation of this stem design was very good in our cohort regardless of fitting manners. This study successfully revealed that ML fitting with femoral component, especially the most proximedial calcar site restricted fitting, would be optimal for reducing stress shielding occurrence in cementless short, tapered-wedge stem THA. Thus, the ideal stem contact region should be considered during THA procedures in light of the reduction of stress shielding development. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

Back to TopTop