Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = tailocins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3743 KiB  
Article
Expression and Antagonistic Activity Against Plant Pathogens of the Phage Tail-like Protein from Burkholderia multivorans WS-FJ9
by Tong-Yue Wen, Xing-Li Xie, Wei-Liang Kong and Xiao-Qin Wu
Microorganisms 2025, 13(4), 853; https://doi.org/10.3390/microorganisms13040853 - 9 Apr 2025
Viewed by 536
Abstract
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial [...] Read more.
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial activity. However, its function in B. multivorans has not yet been reported. This article explores the ability of B. multivorans WS-FJ9 to antagonise plant pathogenic fungi and oomycetes, screening the potential tailocins in the strain WS-FJ9 and verifying their function, to reveal its novel antimicrobial mechanisms. We found that WS-FJ9 had strong antagonistic effects on the plant pathogenic fungi Phomopsis macrospore and Sphaeropsis sapinea, and the pathogenic oomycete Phytophthora cinnamomi. The phage tail-like protein Bm_67459 was predicted from the WS-FJ9 strain genome. The Bm_67459 cDNA encoded 111 amino acid sequence, and the relative molecular weight was approximately 11.69 kDa, the theoretical isoelectric point (pI) was 5.49, and it was a hydrophilic protein. Bm_67459 had no transmembrane helix region or signal peptide, and it belonged to the Phage_TAC_7 super family. qRT-PCR results showed that Bm_67459 gene expression was significantly upregulated during contact between WS-FJ9 and P. cinnamomi. The purified Bm_67459 protein significantly inhibited P. cinnamomi mycelial growth at 10 μg·mL−1. In summary, the WS-FJ9 strain had broad-spectrum anti-phytopathogenic activity, and the tailocin Bm_67459 was an important effector against the plant pathogen P. cinnamomi, which helps to reveal the antagonistic mechanism of this strain at the molecular level and provides excellent strain resources for the biological control of plant diseases. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

28 pages, 11515 KiB  
Article
A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae
by Dorien Dams, Célia Pas, Agnieszka Latka, Zuzanna Drulis-Kawa, Lars Fieseler and Yves Briers
Antibiotics 2025, 14(1), 104; https://doi.org/10.3390/antibiotics14010104 - 18 Jan 2025
Cited by 1 | Viewed by 1959
Abstract
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target [...] Read more.
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections. Full article
(This article belongs to the Section Bacteriophages)
Show Figures

Figure 1

15 pages, 2355 KiB  
Article
Engineering of Salmonella Phages into Novel Antimicrobial Tailocins
by Cedric Woudstra, Anders Nørgaard Sørensen and Lone Brøndsted
Cells 2023, 12(22), 2637; https://doi.org/10.3390/cells12222637 - 16 Nov 2023
Cited by 5 | Viewed by 2684
Abstract
Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, [...] Read more.
Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent Ackermannviridae phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen Salmonella, by deleting the portal vertex or major capsid gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials. Full article
(This article belongs to the Special Issue Bacteriophages and Their Enzymes as Antibacterial Agents)
Show Figures

Figure 1

55 pages, 5789 KiB  
Review
Solvent-Producing Clostridia Revisited
by David T. Jones, Frederik Schulz, Simon Roux and Steven D. Brown
Microorganisms 2023, 11(9), 2253; https://doi.org/10.3390/microorganisms11092253 - 7 Sep 2023
Cited by 9 | Viewed by 7267
Abstract
The review provides an overview of the current status of the solvent-producing clostridia. The origin and development of industrial clostridial species, as well as the history of the industrial Acetone Butanol Ethanol fermentation process, is reexamined, and the recent resurgence of interest in [...] Read more.
The review provides an overview of the current status of the solvent-producing clostridia. The origin and development of industrial clostridial species, as well as the history of the industrial Acetone Butanol Ethanol fermentation process, is reexamined, and the recent resurgence of interest in the production of biobutanol is reviewed. Over 300 fully sequenced genomes for solvent-producing and closely related clostridial species are currently available in public databases. These include 270 genomes sourced from the David Jones culture collection. These genomes were allocated arbitrary DJ codes, and a conversion table to identify the species and strains has now been provided. The expanded genomic database facilitated new comparative genomic and phylogenetic analysis. A synopsis of the common features, molecular taxonomy, and phylogeny of solvent-producing clostridia and the application of comparative phylogenomics are evaluated. A survey and analysis of resident prophages in solvent-producing clostridia are discussed, and the discovery, occurrence, and role of novel R-type tailocins are reported. Prophage genomes with R-type tailocin-like features were detected in all 12 species investigated. The widespread occurrence of tailocins in Gram-negative species is well documented; this survey has indicated that they may also be widespread in clostridia. Full article
(This article belongs to the Special Issue Physiology, Genetic and Industrial Applications of Clostridia)
Show Figures

Figure 1

Back to TopTop