Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = tail Doppler radar (TDR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8992 KiB  
Article
Combined Assimilation of Doppler Wind Lidar and Tail Doppler Radar Data over a Hurricane Inner Core for Improved Hurricane Prediction with the NCEP Regional HWRF System
by Xin Li, Zhaoxia Pu, Jun A. Zhang and George David Emmitt
Remote Sens. 2022, 14(10), 2367; https://doi.org/10.3390/rs14102367 - 13 May 2022
Cited by 5 | Viewed by 2730
Abstract
Accurate specification of hurricane inner-core structure is critical to predicting the evolution of a hurricane. However, observations over hurricane inner cores are generally lacking. Previous studies have emphasized Tail Doppler radar (TDR) data assimilation to improve hurricane inner-core representation. Recently, Doppler wind lidar [...] Read more.
Accurate specification of hurricane inner-core structure is critical to predicting the evolution of a hurricane. However, observations over hurricane inner cores are generally lacking. Previous studies have emphasized Tail Doppler radar (TDR) data assimilation to improve hurricane inner-core representation. Recently, Doppler wind lidar (DWL) has been used as an observing system to sample hurricane inner-core and environmental conditions. The NOAA P3 Hurricane Hunter aircraft has DWL installed and can obtain wind data over a hurricane’s inner core when the aircraft passes through the hurricane. In this study, we examine the impact of assimilating DWL winds and TDR radial winds on the prediction of Hurricane Earl (2016) with the NCEP operational Hurricane Weather Research and Forecasting (HWRF) system. A series of data assimilation experiments are conducted with the Gridpoint Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid system to identify the best way to assimilate TDR and DWL data into the HWRF forecast system. The results show a positive impact of DWL data on hurricane analysis and prediction. Compared with the assimilation of u and v components, assimilation of DWL wind speed provides better hurricane track and intensity forecasts. Proper choices of data thinning distances (e.g., 5 km horizontal thinning and 70 hPa vertical thinning for DWL) can help achieve better analysis in terms of hurricane vortex representation and forecasts. In the analysis and forecast cycles, the combined TDR and DWL assimilation (DWL wind speed and TDR radial wind, along with other conventional data, e.g., NCEP Automated Data Processing (ADP) data) offsets the downgrade analysis from the absence of DWL observations in an analysis cycle and outperforms assimilation of a single type of data (either TDR or DWL) and leads to improved forecasts of hurricane track, intensity, and structure. Overall, assimilation of DWL observations has been beneficial for analysis and forecasts in most cases. The outcomes from this study demonstrate the great potential of including DWL wind profiles in the operational HWRF system for hurricane forecast improvement. Full article
Show Figures

Graphical abstract

27 pages, 13080 KiB  
Article
A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Dopper Radar Observations for the Prediction of Hurricane Edouard (2014)
by Benjamin Davis, Xuguang Wang and Xu Lu
Atmosphere 2021, 12(8), 942; https://doi.org/10.3390/atmos12080942 - 22 Jul 2021
Cited by 10 | Viewed by 2455
Abstract
Six-hourly three-dimensional ensemble variational (3DEnVar) (6H-3DEnVar) data assimilation (DA) assumes constant background error covariance (BEC) during a six-hour DA window and is, therefore, unable to account for temporal evolution of the BEC. This study evaluates the one-hourly 3DEnVar (1H-3DEnVar) and six-hourly 4DEnVar (6H-4DEnVar) [...] Read more.
Six-hourly three-dimensional ensemble variational (3DEnVar) (6H-3DEnVar) data assimilation (DA) assumes constant background error covariance (BEC) during a six-hour DA window and is, therefore, unable to account for temporal evolution of the BEC. This study evaluates the one-hourly 3DEnVar (1H-3DEnVar) and six-hourly 4DEnVar (6H-4DEnVar) DA methods for the analyses and forecasts of hurricanes with rapidly evolving BEC. Both methods account for evolving BEC in a hybrid EnVar DA system. In order to compare these methods, experiments are conducted by assimilating inner core Tail Doppler Radar (TDR) wind for Hurricane Edouard (2014) and by running the Hurricane Weather Research and Forecasting (HWRF) model. In most metrics, 1H-3DEnVar and 6H-4DEnVar analyses and forecasts verify better than 6H-3DEnVar. 6H-4DEnVar produces better thermodynamic analyses than 1H-3DEnVar. Radar reflectivity shows that 1H-3DEnVar produces better structure forecasts. For the first 24–48 h of the intensity forecast, 6H-4DEnVar forecast performs better than 1H-3DEnVar verified against the best track. Degraded 1H-3DEnVar forecasts are found to be associated with background storm center location error as a result of underdispersive ensemble storm center spread. Removing location error in the background improves intensity forecasts of 1H-3DEnVar. Full article
(This article belongs to the Special Issue Tropical Cyclones: Observation and Prediction)
Show Figures

Figure 1

20 pages, 5734 KiB  
Article
The Impact of Stochastic Physics-Based Hybrid GSI/EnKF Data Assimilation on Hurricane Forecasts Using EMC Operational Hurricane Modeling System
by Zhan Zhang, Mingjing Tong, Jason A. Sippel, Avichal Mehra, Banglin Zhang, Keqin Wu, Bin Liu, Jili Dong, Zaizhong Ma, Henry Winterbottom, Weiguo Wang, Lin Zhu, Qingfu Liu, Hyun-Sook Kim, Biju Thomas, Dmitry Sheinin, Li Bi and Vijay Tallapragada
Atmosphere 2020, 11(8), 801; https://doi.org/10.3390/atmos11080801 - 29 Jul 2020
Cited by 8 | Viewed by 3303
Abstract
The National Oceanic and Atmospheric Administration’s (NOAA) cloud-permitting high-resolution operational Hurricane Weather and Research Forecasting (HWRF) model includes the sophisticated hybrid grid-point statistical interpolation (GSI) and Ensemble Kalman Filter (EnKF) data assimilation (DA) system, which allows assimilating high-resolution aircraft observations in tropical cyclone [...] Read more.
The National Oceanic and Atmospheric Administration’s (NOAA) cloud-permitting high-resolution operational Hurricane Weather and Research Forecasting (HWRF) model includes the sophisticated hybrid grid-point statistical interpolation (GSI) and Ensemble Kalman Filter (EnKF) data assimilation (DA) system, which allows assimilating high-resolution aircraft observations in tropical cyclone (TC) inner core regions. In the operational HWRF DA system, the flow-dependent background error covariance matrix is calculated from the HWRF self-cycled 40-member ensemble. This DA system has proved to provide improved initial TC structure and therefore improved TC track and intensity forecasts. However, the uncertainties from the model physics are not taken into account in the FY2017 version of the HWRF DA system. In order to further improve the HWRF DA system, the stochastic physics perturbations are introduced in the HWRF DA, including the cumulus convection scheme, the planetary boundary layer (PBL) scheme, and model surface physics (drag coefficient), for HWRF-based ensembles. This study shows that both TC initial conditions and TC track and intensity forecast skills are improved by adding stochastic model physics in the HWRF self-cycled DA system. It was found that the improvements in the TC initial conditions and forecasts are the results of ensemble spread increases which realistically represent the model background error covariance matrix in HWRF DA. For all 2016 Atlantic storms, the TC track and intensity forecast skills are improved by about ~3% and 6%, respectively, compared to the control experiment. The case study shows that the stochastic physics in HWRF DA is especially helpful for those TCs that have inner-core high-resolution aircraft observations, such as tail Doppler radar (TDR) data. Full article
(This article belongs to the Special Issue Modeling and Data Assimilation for Tropical Cyclone Forecasts)
Show Figures

Figure 1

Back to TopTop