Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = synthetic oligo-acyl-lysl (OAK) peptidomimetic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 793 KiB  
Article
Selected Antimicrobial Peptides Inhibit In Vitro Growth of Campylobacter spp.
by John Eric Line, Bruce S. Seal and Johnna K. Garrish
Appl. Microbiol. 2022, 2(4), 688-700; https://doi.org/10.3390/applmicrobiol2040053 - 21 Sep 2022
Cited by 1 | Viewed by 2689
Abstract
Campylobacter is a major cause of acute human diarrheal illness. Broiler chickens constitute a primary reservoir for C. jejuni leading to human infection. Consequently, there is a need for developing novel intervention methods. Antimicrobial peptides (AMP) are small proteins which have evolved in [...] Read more.
Campylobacter is a major cause of acute human diarrheal illness. Broiler chickens constitute a primary reservoir for C. jejuni leading to human infection. Consequently, there is a need for developing novel intervention methods. Antimicrobial peptides (AMP) are small proteins which have evolved in most lifeforms to provide defense against microbial infections. To date, over 3000 AMP have been discovered; however, few of them have been analyzed specifically for ability to kill campylobacters. We selected and evaluated a set of 11 unique chemically synthesized AMP for ability to inhibit growth of C. jejuni. Six of the AMP we tested produced zones of inhibition on lawns of C. jejuni. These AMP included: NRC-13, RL-37, Temporin L, Cecropin–Magainin, Dermaseptin, and C12K-2β12. In addition, MIC were determined for Cecropin–Magainin, RL-37 and C12K-2β12 against 15 isolates of Campylobacter representing the three most common pathogenic strains. MIC for campylobacters were approximately 3.1 µg/mL for AMP RL-37 and C12K-2β12. MIC were slightly higher for the Cecropin–Magainin AMP in the range of 12.5 to 100 µg/mL. These AMP are attractive subjects for future study and potential in vivo delivery to poultry to reduce Campylobacter spp. populations. Full article
Show Figures

Figure 1

Back to TopTop