Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = switchable mode converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2112 KiB  
Article
Meta-Optics-Empowered Switchable Integrated Mode Converter Based on the Adjoint Method
by Yingli Ha, Yinghui Guo, Mingbo Pu, Mingfeng Xu, Xiong Li, Xiaoliang Ma, Fang Zou and Xiangang Luo
Nanomaterials 2022, 12(19), 3395; https://doi.org/10.3390/nano12193395 - 28 Sep 2022
Cited by 7 | Viewed by 2374
Abstract
Monolithic integrated mode converters with high integration are essential to photonic integrated circuits (PICs), and they are widely used in next-generation optical communications and complex quantum systems. It is expected that PICs will become more miniaturized, multifunctional, and intelligent with the development of [...] Read more.
Monolithic integrated mode converters with high integration are essential to photonic integrated circuits (PICs), and they are widely used in next-generation optical communications and complex quantum systems. It is expected that PICs will become more miniaturized, multifunctional, and intelligent with the development of micro/nano-technology. The increase in design space makes it difficult to realize high-performance device design based on traditional parameter sweeping or heuristic design, especially in the optimal design of reconfigurable PIC devices. Combining the mode coupling theory and adjoint calculation method, we proposed a design method for a switchable mode converter. The device could realize the transmission of TE0 mode and the conversion from TE0 to TE1 mode with a footprint of 0.9 × 7.5 μm2 based on the phase change materials (PCMs). We also found that the mode purity could reach 78.2% in both states at the working wavelength of 1.55 μm. The designed method will provide a new impetus for programmable photonic integrated devices and find broad application prospects in communication, optical neural networks, and sensing. Full article
(This article belongs to the Special Issue Nanophotonic and Optical Nanomaterials)
Show Figures

Figure 1

11 pages, 3355 KiB  
Article
Demonstration of Reconfigurable BPFs with Wide Tuning Bandwidth Range Using 3λ/4 Open- and λ/2 Short- Ended Stubs
by Salman Arain, Abdul Quddious, Symeon Nikolaou and Photos Vryonides
Technologies 2020, 8(1), 14; https://doi.org/10.3390/technologies8010014 - 3 Feb 2020
Cited by 1 | Viewed by 4031
Abstract
In this paper, two implementations of reconfigurable bandwidth bandpass filters (BPFs) are demonstrated both operating at a fixed center frequency of 2.4 GHz. The proposed reconfigurable bandwidth filters are based on a square ring resonator loaded with λg/4 open-ended stubs that [...] Read more.
In this paper, two implementations of reconfigurable bandwidth bandpass filters (BPFs) are demonstrated both operating at a fixed center frequency of 2.4 GHz. The proposed reconfigurable bandwidth filters are based on a square ring resonator loaded with λg/4 open-ended stubs that are permanently connected to the ring and converted to either 3λg/4 open-ended stubs or λg/2 short-ended stubs by means of positive-intrinsic-negative(PIN) diodes to implement two reconfigurable bandwidth states for each case. Due to the symmetrical nature of the design, even- and odd-mode analysis is used to derive the closed-form to describe the reconfigurable filters’ behavior. The switching between narrowband and wideband is achieved using PIN diodes. In the first implementation (λg/4 open-ended stubs to 3λg/4 open-ended stubs), a reconfigurable bandwidth bandpass filter is proposed where additional out-of-band transmission zeros are generated by integrating a λg/2 open-ended stub at the input port. In the second implementation (λg/4 open-ended stubs to λg/2 short-ended stubs), further improvement in the upper stopband is achieved by utilizing a pair of parallel coupled lines (PCLs) as feeding lines and a pair of λg/4 high impedance short-ended stubs implemented at the input and output ports. To verify the validity of the simulated results, the prototypes of the proposed reconfigurable filters were fabricated. For the first case, measured insertion loss is less than 1.8 dB with a switchable 3-dB fractional bandwidth (FBW) range from 28% to 54%. The measured results for the second case exhibit a low insertion loss of less than 1 dB and a 3-dB fractional bandwidth that can be switched from 34% to 75%, while the center frequency is kept constant at 2.4 GHz in both cases. Full article
Show Figures

Figure 1

9 pages, 3854 KiB  
Article
Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications
by Seung-Hyun Eom, Yunsik Seo and Sungjoon Lim
Sensors 2015, 15(12), 31171-31179; https://doi.org/10.3390/s151229851 - 10 Dec 2015
Cited by 20 | Viewed by 9178
Abstract
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and [...] Read more.
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop