Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = supersymmetric dark equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 411 KiB  
Review
Applications of Symmetries to Nonlinear Partial Differential Equations
by Ping Liu and Senyue Lou
Symmetry 2024, 16(12), 1591; https://doi.org/10.3390/sym16121591 - 28 Nov 2024
Cited by 2 | Viewed by 1451
Abstract
This review begins with the standard Lie symmetry theory for nonlinear PDEs and explores extensions of symmetry analysis. First, it introduces three key symmetry reduction methods: the classical symmetry method, conditional symmetries, and the CK direct method. Next, it presents two finite symmetry [...] Read more.
This review begins with the standard Lie symmetry theory for nonlinear PDEs and explores extensions of symmetry analysis. First, it introduces three key symmetry reduction methods: the classical symmetry method, conditional symmetries, and the CK direct method. Next, it presents two finite symmetry transformation group methods—one related to Lax pairs and one independent of them. The fourth section reviews four nonlocal symmetry methods based on conserved forms, conformal invariants, Darboux transformations, and Lax pairs. The final section covers supersymmetry theory and supersymmetric dark equations. Each method is illustrated with examples and references. Full article
(This article belongs to the Section Mathematics)
15 pages, 289 KiB  
Article
Cosmological Constant in SUGRA Models with Degenerate Vacua
by Colin Froggatt, Holger Nielsen, Roman Nevzorov and Anthony Thomas
Universe 2019, 5(10), 214; https://doi.org/10.3390/universe5100214 - 22 Oct 2019
Viewed by 2810
Abstract
The extrapolation of couplings up to the Planck scale within the standard model (SM) indicates that the Higgs effective potential can have two almost degenerate vacua, which were predicted by the multiple point principle (MPP). The application of the MPP to [...] Read more.
The extrapolation of couplings up to the Planck scale within the standard model (SM) indicates that the Higgs effective potential can have two almost degenerate vacua, which were predicted by the multiple point principle (MPP). The application of the MPP to ( N = 1 ) supergravity (SUGRA) implies that the SUGRA scalar potential of the hidden sector possesses at least two exactly degenerate minima. The first minimum is associated with the physical phase in which we live. In the second supersymmetric (SUSY) Minkowski vacuum, the local SUSY may be broken dynamically, inducing a tiny vacuum energy density. In this paper, we consider the no-scale-inspired SUGRA model in which the MPP conditions are fulfilled without any extra fine-tuning at the tree-level. Assuming that at high energies, the couplings in both phases are identical, one can estimate the dark energy density in these vacua. Using the two-loop renormalization group (RG) equations, we find that the measured value of the cosmological constant can be reproduced if the SUSY breaking scale M S in the physical phase is of the order of 100 TeV. The scenario with the Planck scale SUSY breaking is also discussed. Full article
(This article belongs to the Special Issue The Cosmological Constant Puzzle)
27 pages, 918 KiB  
Article
Supersymmetry with Radiatively-Driven Naturalness: Implications for WIMP and Axion Searches
by Kyu Jung Bae, Howard Baer, Vernon Barger, Michael R. Savoy and Hasan Serce
Symmetry 2015, 7(2), 788-814; https://doi.org/10.3390/sym7020788 - 28 May 2015
Cited by 24 | Viewed by 6030
Abstract
By insisting on naturalness in both the electroweak and quantum chromodynamics (QCD) sectors of the minimal supersymmetric standard model (MSSM), the portrait for dark matter production is seriously modified from the usual weakly interacting massive particle (WIMP) miracle picture. In supersymmetry (SUSY) models [...] Read more.
By insisting on naturalness in both the electroweak and quantum chromodynamics (QCD) sectors of the minimal supersymmetric standard model (MSSM), the portrait for dark matter production is seriously modified from the usual weakly interacting massive particle (WIMP) miracle picture. In supersymmetry (SUSY) models with radiatively-driven naturalness (radiative natural SUSY or radiative natural SUSY (RNS)) which include a Dine–Fischler–Srednicki–Zhitnitsky (DFSZ)-like solution to the strong charge-conjugation-parity (CP) and SUSY \(\mu\) problems, dark matter is expected to be an admixture of both axions and higgsino-like WIMPs. The WIMP/axion abundance calculation requires simultaneous solution of a set of coupled Boltzmann equations which describe quasi-stable axinos and saxions. In most of parameter space, axions make up the dominant contribution of dark matter although regions of WIMP dominance also occur. We show the allowed range of Peccei-Quinn (PQ) scale \(f_a\) and compare to the values expected to be probed by the axion dark matter search experiment (ADMX) axion detector in the near future. We also show WIMP detection rates, which are suppressed from usual expectations, because now WIMPs comprise only a fraction of the total dark matter. Nonetheless, ton-scale noble liquid detectors should be able to probe the entirety of RNS parameter space. Indirect WIMP detection rates are less propitious since they are reduced by the square of the depleted WIMP abundance. Full article
(This article belongs to the Special Issue Supersymmetry and Dark Matter)
Show Figures

Back to TopTop