Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = supersite sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 13770 KiB  
Article
Limitations of a Multispectral UAV Sensor for Satellite Validation and Mapping Complex Vegetation
by Brendan Cottrell, Margaret Kalacska, Juan-Pablo Arroyo-Mora, Oliver Lucanus, Deep Inamdar, Trond Løke and Raymond J. Soffer
Remote Sens. 2024, 16(13), 2463; https://doi.org/10.3390/rs16132463 - 5 Jul 2024
Cited by 7 | Viewed by 4984
Abstract
Optical satellite data products (e.g., Sentinel-2, PlanetScope, Landsat) require proper validation across diverse ecosystems. This has conventionally been achieved using airborne and more recently unmanned aerial vehicle (UAV) based hyperspectral sensors which constrain operations by both their cost and complexity of use. The [...] Read more.
Optical satellite data products (e.g., Sentinel-2, PlanetScope, Landsat) require proper validation across diverse ecosystems. This has conventionally been achieved using airborne and more recently unmanned aerial vehicle (UAV) based hyperspectral sensors which constrain operations by both their cost and complexity of use. The MicaSense Altum is an accessible multispectral sensor that integrates a radiometric thermal camera with 5 bands (475 nm–840 nm). In this work we assess the spectral reflectance accuracy of a UAV-mounted MicaSense Altum at 25, 50, 75, and 100 m AGL flight altitudes using the manufacturer provided panel-based reflectance conversion technique for atmospheric correction at the Mer Bleue peatland supersite near Ottawa, Canada. Altum derived spectral reflectance was evaluated through comparison of measurements of six known nominal reflectance calibration panels to in situ spectroradiometer and hyperspectral UAV reflectance products. We found that the Altum sensor saturates in the 475 nm band viewing the 18% reflectance panel, and for all brighter panels for the 475, 560, and 668 nm bands. The Altum was assessed against pre-classified hummock-hollow-lawn microtopographic features using band level pair-wise comparisons and common vegetation indices to investigate the sensor’s viability as a validation tool of PlanetScope Dove 8 band and Sentinel-2A satellite products. We conclude that the use of the Altum needs careful consideration, and its field deployment and reflectance output does not meet the necessary cal/val requirements in the peatland site. Full article
Show Figures

Figure 1

12 pages, 3938 KiB  
Article
Concentration-Temporal Multilevel Calibration of Low-Cost PM2.5 Sensors
by Rong-Fuh Day, Peng-Yeng Yin, Yuh-Chin T. Huang, Cheng-Yi Wang, Chih-Chun Tsai and Cheng-Hsien Yu
Sustainability 2022, 14(16), 10015; https://doi.org/10.3390/su141610015 - 12 Aug 2022
Cited by 4 | Viewed by 1600
Abstract
Ambient aerosols have a significant impact on plant species mortality, air pollution, and climate change. It is critical to monitor the concentrations of aerosols, especially particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5), which has a direct relationship with [...] Read more.
Ambient aerosols have a significant impact on plant species mortality, air pollution, and climate change. It is critical to monitor the concentrations of aerosols, especially particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5), which has a direct relationship with human respiratory diseases. Recently, low-cost PM2.5 sensors have been deployed to provide a denser monitoring coverage than that of government-built monitoring supersites, which only give a macro perspective of air quality. To increase the measurement accuracy, low-cost sensors need to be calibrated. In current practice, regression techniques are used to calibrate sensors. This paper proposes a concentration-temporal multilevel calibration method to cope with the varying regression relation in different concentration and temporal domains. The performance of our method is evaluated with real field data from a supersite sensor and a low-cost sensor deployed in Puli, Taiwan. The experimental results show that our calibration method significantly outperforms linear regression in terms of R2, Root Mean Square Error, and Normalized Mean Error. Moreover, our method compares favorably with a machine learning calibration method based on gradient regression tree boosting. Full article
(This article belongs to the Special Issue Sustainability and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop