Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = superquadric surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7096 KB  
Article
Dimensioning Cuboid and Cylindrical Objects Using Only Noisy and Partially Observed Time-of-Flight Data
by Bryan Rodriguez, Prasanna Rangarajan, Xinxiang Zhang and Dinesh Rajan
Sensors 2023, 23(21), 8673; https://doi.org/10.3390/s23218673 - 24 Oct 2023
Cited by 2 | Viewed by 1705
Abstract
One of the challenges of using Time-of-Flight (ToF) sensors for dimensioning objects is that the depth information suffers from issues such as low resolution, self-occlusions, noise, and multipath interference, which distort the shape and size of objects. In this work, we successfully apply [...] Read more.
One of the challenges of using Time-of-Flight (ToF) sensors for dimensioning objects is that the depth information suffers from issues such as low resolution, self-occlusions, noise, and multipath interference, which distort the shape and size of objects. In this work, we successfully apply a superquadric fitting framework for dimensioning cuboid and cylindrical objects from point cloud data generated using a ToF sensor. Our work demonstrates that an average error of less than 1 cm is possible for a box with the largest dimension of about 30 cm and a cylinder with the largest dimension of about 20 cm that are each placed 1.5 m from a ToF sensor. We also quantify the performance of dimensioning objects using various object orientations, ground plane surfaces, and model fitting methods. For cuboid objects, our results show that the proposed superquadric fitting framework is able to achieve absolute dimensioning errors between 4% and 9% using the bounding technique and between 8% and 15% using the mirroring technique across all tested surfaces. For cylindrical objects, our results show that the proposed superquadric fitting framework is able to achieve absolute dimensioning errors between 2.97% and 6.61% when the object is in a horizontal orientation and between 8.01% and 13.13% when the object is in a vertical orientation using the bounding technique across all tested surfaces. Full article
Show Figures

Figure 1

14 pages, 15136 KB  
Article
Subwavelength Hexahedral Plasmonic Scatterers: History, Symmetries, and Resonant Characteristics
by Dimitrios Tzarouchis, Pasi Ylä-Oijala and Ari Sihvola
Photonics 2019, 6(1), 18; https://doi.org/10.3390/photonics6010018 - 25 Feb 2019
Cited by 2 | Viewed by 3813
Abstract
In this work, we investigate the resonant characteristics of hexahedral (cubical) inclusions at the plasmonic domain. After an introduction to the notion of superquadric surfaces, i.e., surfaces that model various versions of a rounded cube, we present the main resonant spectrum and the [...] Read more.
In this work, we investigate the resonant characteristics of hexahedral (cubical) inclusions at the plasmonic domain. After an introduction to the notion of superquadric surfaces, i.e., surfaces that model various versions of a rounded cube, we present the main resonant spectrum and the surface distributions for two particular cases of a smooth and a sharp cube in the plasmonic domain. We present a historical comparative overview of the main contributions available since the 1970s. A new categorization scheme of the resonances of a cube is introduced, based on symmetry considerations. The obtained results are compared against several recent works, exposing that the higher-order modes are extremely susceptible to both the choice of sharpness of the cube and the modeling mesh. This work can be readily used as a reference for both historical and contemporary studies of the plasmonic aspects of a cube. Full article
Show Figures

Figure 1

Back to TopTop