Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sulforpahane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 429 KiB  
Review
Dietary Regulation of Histone Acetylases and Deacetylases for the Prevention of Metabolic Diseases
by Tho X. Pham and Jiyoung Lee
Nutrients 2012, 4(12), 1868-1886; https://doi.org/10.3390/nu4121868 - 28 Nov 2012
Cited by 68 | Viewed by 10889
Abstract
Age-related diseases such as type 2 diabetes, cardiovascular disease, and cancer involve epigenetic modifications, where accumulation of minute changes in the epigenome over time leads to disease manifestation. Epigenetic changes are influenced by life style and diets. This represents an avenue whereby dietary [...] Read more.
Age-related diseases such as type 2 diabetes, cardiovascular disease, and cancer involve epigenetic modifications, where accumulation of minute changes in the epigenome over time leads to disease manifestation. Epigenetic changes are influenced by life style and diets. This represents an avenue whereby dietary components could accelerate or prevent age-related diseases through their effects on epigenetic modifications. Histone acetylation is an epigenetic modification that is regulated through the opposing action of histone acetylases (HATs) and deacetylases (HDACs). These two families of enzymes play critical roles in metabolic processes and their dysregulation is associated with pathogenesis of several diseases. Dietary components, such as butyrate, sulforaphane, and curcumin, have been shown to affect HAT and HDAC activity, and their health benefits are attributed, at least in part, to epigenetic modifications. Given the decades that it takes to accumulate epigenetic changes, it is unlikely that pharmaceuticals could undo epigenetic changes without side effects. Therefore, long term consumption of dietary components that can alter the epigenome could be an attractive means of disease prevention. The goal of this review is to highlight the roles of diets and food components in epigenetic modifications through the regulation of HATs and HDACs for disease prevention. Full article
(This article belongs to the Special Issue Nutrigenetics and Nutrigenomics)
Back to TopTop