Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = subtilisin-related peptidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1404 KiB  
Review
The Management of Cardiometabolic Risk in MAFLD: Therapeutic Strategies to Modulate Deranged Metabolism and Cholesterol Levels
by Annalisa Pezzoli, Ludovico Abenavoli, Marialaura Scarcella, Carlo Rasetti, Gianluca Svegliati Baroni, Jan Tack and Emidio Scarpellini
Medicina 2025, 61(3), 387; https://doi.org/10.3390/medicina61030387 - 23 Feb 2025
Cited by 1 | Viewed by 2038
Abstract
Background and Objectives: Fatty Liver Disease is a major health problem worldwide. We can distinguish liver steatosis as non-associated or associated with chronic/acute alcohol consumption. These two entities share similar stages ranging from hepatic fat storage (namely, steatosis) to inflammation, necrosis, and fibrosis [...] Read more.
Background and Objectives: Fatty Liver Disease is a major health problem worldwide. We can distinguish liver steatosis as non-associated or associated with chronic/acute alcohol consumption. These two entities share similar stages ranging from hepatic fat storage (namely, steatosis) to inflammation, necrosis, and fibrosis until hepatocellular carcinoma (HCC). Over time, “Metabolic Associated Fatty Liver Disease” (MAFLD) has replaced nonalcoholic fatty liver disease (NAFLD) nomenclature and has included cardiometabolic criteria in these patients definition. Thus, obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia are MAFLD features and are of the metabolic syndrome. Importantly, there is not a specific treatment for MAFLD, but there are therapeutic strategies that act on metabolic dysfunction related to MAFLD. They can reduce the progression of liver fibrosis and its complications. Materials and Methods: For all these reasons, we conducted a narrative review of the literature, and we focused on metabolic dysfunction related to MAFLD, with a special regard for cholesterol metabolism. Results: MAFLD is a recently redefined condition that better describes the metabolism derangement responsible for fatty liver disease. This distinguishes MAFLD from NAFLD. In fact, the diagnostic criteria for MAFLD require the presence of liver steatosis together with at least one of the following: obesity, T2DM, or evidence of metabolic disorder such as hypertriglyceridemia, low high-density lipoprotein cholesterol, or hypertension. As a result, MAFLD is closely linked to an increased cardiometabolic risk. Current therapeutic approaches can be used to reduce this risk, focusing on lifestyle interventions and pharmacological strategies. Several treatments in patients diagnosed with MAFLD are mainly cholesterol-lowering remedies. Among these, Pro-protein Convertase Subtilisin/Kexin type 9 inhibitors (PCSK9i) show the most promising efficacy profile but data on liver fibrosis are lacking. Agonists of GLP-1 receptor, Sodium-glucose cotransporter-2 inhibitors (SGLT2i) and Dipeptidyl Peptidase-4 inhibitors (DPP-4i) have a “ multi-hit “ action allowing their use also in diabetic patients with MAFLD. Conclusions: Lifestyle modifications, some nutraceuticals, statins, incretins, and PCSK9i have changed the natural course and significantly improved the cardiometabolic outcomes of MAFLD. Emerging cholesterol-lowering drugs, such as Bempedoic acid, can overcome low compliance to statins’ use and their controversial effect on liver fibrosis. Finally, medications targeting insulin resistance allow for strategic interventions of the convoluted pathophysiology of MAFLD in multiple steps, with the potential to reduce liver steatosis, inflammation, and necrosis and, sometimes even to reverse liver fibrosis. Full article
Show Figures

Figure 1

13 pages, 990 KiB  
Article
Marker-Trait Associations for Tolerance to Ash Dieback in Common Ash (Fraxinus excelsior L.)
by Rajiv Chaudhary, Tilman Rönneburg, Matilda Stein Åslund, Karl Lundén, Mikael Brandström Durling, Katarina Ihrmark, Audrius Menkis, Lars-Göran Stener, Malin Elfstrand, Michelle Cleary and Jan Stenlid
Forests 2020, 11(10), 1083; https://doi.org/10.3390/f11101083 - 10 Oct 2020
Cited by 12 | Viewed by 4168
Abstract
Common ash (Fraxinus excelsior L.) is a tree species of significant ecological and economic importance that has suffered a devastating decline since the 1990s in Europe. Native ash species are being threatened by the alien invasive fungus Hymenoscyphus fraxineus, which causes [...] Read more.
Common ash (Fraxinus excelsior L.) is a tree species of significant ecological and economic importance that has suffered a devastating decline since the 1990s in Europe. Native ash species are being threatened by the alien invasive fungus Hymenoscyphus fraxineus, which causes ash dieback. The main goal of the study was to develop markers for traits related to tolerance to ash dieback and to investigate whether genotypes selected for tolerance were genetically different from susceptible wild populations. We phenotyped 326 ash trees from Sweden for disease severity and genotyped them using 63 amplicon-derived single-nucleotide polymorphism (SNP) markers derived from genes in 40 scaffolds spanning 8 MB in total, which represents approximately 1% of the ash genome. We used a mixed linear model to test for an association between genotypic variation at these loci and disease severity of ash. In total, two SNPs were found to have significant associations. One non-synonymous SNP associated with the disease severity of ash was found in a gene predicted to encode a subtilisin-related peptidase S8/S53 domain. A second marginally significant marker was associated with an LRR gene. Our results demonstrate an inexpensive time-effective method for generating genomic data that could have potential for use in future tree breeding programs and provide information for marker-assisted selection. Our study also showed a low differentiation between genotypes selected for disease tolerance and the wild population of ash representing a range of susceptibilities to ash dieback, indicating opportunities for further selection without significantly losing genetic diversity in the ash population. Full article
Show Figures

Figure 1

11 pages, 2446 KiB  
Article
Impact of Comorbidities on SARS-CoV-2 Viral Entry-Related Genes
by Joshua D. Breidenbach, Prabhatchandra Dube, Subhanwita Ghosh, Belal N. Abdullah, Nikolai N. Modyanov, Deepak Malhotra, Lance D. Dworkin, Steven T. Haller and David J. Kennedy
J. Pers. Med. 2020, 10(4), 146; https://doi.org/10.3390/jpm10040146 - 25 Sep 2020
Cited by 16 | Viewed by 5615
Abstract
Viral entry mechanisms for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an important aspect of virulence. Proposed mechanisms involve host cell membrane-bound angiotensin-converting enzyme 2 (ACE2), type II transmembrane serine proteases (TTSPs), such as transmembrane serine protease isoform 2 (TMPRSS2), lysosomal endopeptidase [...] Read more.
Viral entry mechanisms for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an important aspect of virulence. Proposed mechanisms involve host cell membrane-bound angiotensin-converting enzyme 2 (ACE2), type II transmembrane serine proteases (TTSPs), such as transmembrane serine protease isoform 2 (TMPRSS2), lysosomal endopeptidase Cathepsin L (CTSL), subtilisin-like proprotein peptidase furin (FURIN), and even potentially membrane bound heparan sulfate proteoglycans. The distribution and expression of many of these genes across cell types representing multiple organ systems in healthy individuals has recently been demonstrated. However, comorbidities such as diabetes and cardiovascular disease are highly prevalent in patients with Coronavirus Disease 2019 (COVID-19) and are associated with worse outcomes. Whether these conditions contribute directly to SARS-CoV-2 virulence remains unclear. Here, we show that the expression levels of ACE2, TMPRSS2 and other viral entry-related genes, as well as potential downstream effector genes such as bradykinin receptors, are modulated in the target organs of select disease states. In tissues, such as the heart, which normally express ACE2 but minimal TMPRSS2, we found that TMPRSS2 as well as other TTSPs are elevated in individuals with comorbidities compared to healthy individuals. Additionally, we found the increased expression of viral entry-related genes in the settings of hypertension, cancer, or smoking across target organ systems. Our results demonstrate that common comorbidities may contribute directly to SARS-CoV-2 virulence and we suggest new therapeutic targets to improve outcomes in vulnerable patient populations. Full article
Show Figures

Graphical abstract

Back to TopTop