Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = subsea HVDC cable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3601 KiB  
Article
Selection of an Optimal Frequency for Offshore Wind Farms
by Byeonghyeon An, Junsoo Che, Taehun Kim and Taesik Park
Energies 2024, 17(10), 2440; https://doi.org/10.3390/en17102440 - 20 May 2024
Cited by 3 | Viewed by 1462
Abstract
Offshore wind power has attracted significant attention due to its high potential, capability for large-scale farms, and high capacity factor. However, it faces high investment costs and issues with subsea power transmission. Conventional high-voltage AC (HVAC) methods are limited by charging current, while [...] Read more.
Offshore wind power has attracted significant attention due to its high potential, capability for large-scale farms, and high capacity factor. However, it faces high investment costs and issues with subsea power transmission. Conventional high-voltage AC (HVAC) methods are limited by charging current, while high-voltage DC (HVDC) methods suffer from the high cost of power conversion stations. The low-frequency AC (LFAC) method mitigates the charging current through low-frequency operation and can reduce power conversion station costs. This paper aims to identify the economically optimal frequency by comparing the investment costs of LFAC systems at various frequencies. The components of LFAC, including transformers, offshore platforms, and cables, exhibit frequency-dependent characteristics. Lower frequencies result in an increased size and volume of transformers, leading to higher investment costs for offshore platforms. In contrast, cable charging currents and losses are proportional to frequency, causing the total cost to reach a minimum at a specific frequency. To determine the optimal frequency, simulations of investment costs for varying capacities and distances were conducted. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 4577 KiB  
Article
Fluid–Structure Interaction Analysis and Verification Test for Soil Penetration to Determine the Burial Depth of Subsea HVDC Cable
by Chang-Yong Song
J. Mar. Sci. Eng. 2022, 10(10), 1453; https://doi.org/10.3390/jmse10101453 - 8 Oct 2022
Cited by 4 | Viewed by 2116
Abstract
Recently, there have been frequent reports of subsea cable breakage accidents caused by the drop of an anchor pile for aquaculture works involving subsea cables for high-voltage direct current (HVDC) transmission embedded in the southwest sea of Korea. To determine the burial depth [...] Read more.
Recently, there have been frequent reports of subsea cable breakage accidents caused by the drop of an anchor pile for aquaculture works involving subsea cables for high-voltage direct current (HVDC) transmission embedded in the southwest sea of Korea. To determine the burial depth that can ensure the safety of subsea HVDC cables embedded under the seabed from the drop of anchor files, the soil penetration characteristics of anchor piles should be reasonably estimated. In the present study, the penetration characteristics of anchor piles into the soil under which subsea HVDC cables are embedded were evaluated using numerical simulations and field verification tests. The numerical simulation for the soil penetration phenomena of anchor piles was carried out using the fluid–structure interaction analysis method using the general purpose nonlinear finite element analysis code based on explicit time integration. Regarding the soil into which anchor piles penetrate, three types of soil—a clay layer, a sand layer, and a clay–sand mixed layer—were considered, which are the representative soil types in the southwest sea of Korea, where many subsea HVDC cables have been embedded. The result of fluid–structure interaction analysis showed that the maximum penetration into the clay layer was higher than that into the sand layer and the clay–sand mixed layer by 86.3% and 36.4% or more, respectively. The error rates of the field verification test and the fluid–structure interaction analysis were found to be 9.8%, 2.4%, and 2.4% in the clay layer, the sand layer, and the clay–sand mixed layer, respectively, which were found to be reasonable levels when considering that it was the numerical simulation for the soil penetration of an anchor pile resulting from drop impacts. The penetration depths of anchor piles were found to be the deepest in the clay layer, showing values of 3.9 to 4.1 m, and those in the sand layer were the shallowest, showing values of 1.9 to 2.1 m. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Structures)
Show Figures

Figure 1

23 pages, 2067 KiB  
Article
Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
by Srikkanth Ramachandran, Kais Siala, Cristina de La Rúa, Tobias Massier, Arif Ahmed and Thomas Hamacher
Energies 2021, 14(21), 7178; https://doi.org/10.3390/en14217178 - 1 Nov 2021
Cited by 6 | Viewed by 3380
Abstract
This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model was [...] Read more.
This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model was developed to estimate the capacities of the system components. A comprehensive life cycle assessment model was built to estimate emissions of manufacturing and use of these components. Our evaluation shows that, for covering one fifth of Singapore’s electrical energy needs, a system with an installed capacity of 13GWPV, 17 GWh battery storage and 3.2GW subsea cable is required. The life cycle GHG emissions of such a system are estimated to be 110gCO2eq/kWh, with the majority coming from the manufacturing of solar PV panels. Cable manufacturing does not contribute largely toward GHG emissions. By varying full-load hours and cable lengths, it was assessed that sites closer to Singapore might provide the same energy at same/lower carbon footprint and reduced cost, despite the lower insolation as compared to Australia. However, these sites could cause greater emissions from land use changes than the deserts of Australia, offsetting the advantages of a shorter HVDC cable. Full article
Show Figures

Figure 1

Back to TopTop