Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = submersion-light apparatus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4770 KiB  
Article
Development of 3D Slurry Printing Technology with Submersion-Light Apparatus in Dental Application
by Cho-Pei Jiang, M. Fahrur Rozy Hentihu, Yung-Chang Cheng, Tzu-Yi Lei, Richard Lin and Zhangwei Chen
Materials 2021, 14(24), 7873; https://doi.org/10.3390/ma14247873 - 19 Dec 2021
Cited by 12 | Viewed by 3842
Abstract
This study proposes an innovative three-dimensional printing technology with submersion-light apparatus. A zirconia powder with an average particle size of 0.5 µm is mixed with 1,6-Hexanediol diacrylate (HDDA) and photo-initiator to form a slurry. The weight percentage of zirconia powder to HDDA is [...] Read more.
This study proposes an innovative three-dimensional printing technology with submersion-light apparatus. A zirconia powder with an average particle size of 0.5 µm is mixed with 1,6-Hexanediol diacrylate (HDDA) and photo-initiator to form a slurry. The weight percentage of zirconia powder to HDDA is 70:30 wt.%. A light engine box is submerged in a slurry and emits a layered pattern to induce photopolymerization and transform a slurry into a printed green body. Green body sintering parameters for the first and second stages are 380 °C with a holding time of 1.5 h and 1550 °C with a holding time of 2 h. The sintered parts’ length, width, and height shrinkage ratios are 29.9%, 29.7%, and 30.6%. The ball milling decreases the powder particle size to 158 ± 16 nm and the mean grain size of the sintered part is 423 ± 25 nm. The sintered part has an average hardness of 1224 (HV), a density of 5.45 g/cm3, and a flexural strength of 641.04 MPa. A three-unit zirconia dental bridge also has been fabricated with a clinically acceptable marginal gap. Full article
(This article belongs to the Special Issue 3D Printing for Dental Applications)
Show Figures

Figure 1

20 pages, 4189 KiB  
Article
Submersible Spectrofluorometer for Real-Time Sensing of Water Quality
by Adriana Puiu, Luca Fiorani, Ivano Menicucci, Marco Pistilli and Antonia Lai
Sensors 2015, 15(6), 14415-14434; https://doi.org/10.3390/s150614415 - 18 Jun 2015
Cited by 17 | Viewed by 9333
Abstract
In this work, we present a newly developed submersible spectrofluorometer (patent pending) applied to real-time sensing of water quality, suitable for monitoring some important indicators of the ecological status of natural waters such as chlorophyll-a, oil and protein-like material. For the optomechanical realization [...] Read more.
In this work, we present a newly developed submersible spectrofluorometer (patent pending) applied to real-time sensing of water quality, suitable for monitoring some important indicators of the ecological status of natural waters such as chlorophyll-a, oil and protein-like material. For the optomechanical realization of the apparatus, a novel conceptual design has been adopted in order to avoid filters and pumps while maintaining a high signal-to-noise ratio. The elimination of filters and pumps has the advantage of greater system simplicity and especially of avoiding the risk of sample degradation. The use of light-emitting diodes as an excitation source instead of Xe lamps or laser diodes helped save on size, weight, power consumption and costs. For sensor calibration we performed measurements on water samples with added chlorophyll prepared in the laboratory. The sensor functionality was tested during field campaigns conducted at Albano Lake in Latium Region of Italy as well as in the Herzliya Harbor, a few kilometers North East of Tel Aviv in Israel. The obtained results are reported in the paper. The sensitivity achieved for chlorophyll-a detection was found to be at least 0.2 µg/L. Full article
(This article belongs to the Special Issue Modern Technologies for Sensing Pollution in Air, Water, and Soil)
Show Figures

Graphical abstract

Back to TopTop