Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = stress relief annealing (SRA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7792 KiB  
Article
Evolution of the Heterogeneous Microstructure of a 12Cr1MoV Welded Joint after Post-Weld Heat Treatment and Its Effect on Mechanical Properties
by Bin Yang, Guanghua Sun, Xiaodong Hu, Zichen Liu, Xuefang Xie, Wei Peng and Xiaoming Shao
Metals 2023, 13(12), 1998; https://doi.org/10.3390/met13121998 - 12 Dec 2023
Cited by 2 | Viewed by 1570
Abstract
The non-uniformity of microstructures and mechanical properties across a whole welded joint is a crucial factor leading to its weakening performance and premature failure. Post-weld heat treatment is a primary method for increasing the mechanical properties. However, the evolution mechanism of mechanical properties [...] Read more.
The non-uniformity of microstructures and mechanical properties across a whole welded joint is a crucial factor leading to its weakening performance and premature failure. Post-weld heat treatment is a primary method for increasing the mechanical properties. However, the evolution mechanism of mechanical properties related to heterogeneous microstructure after heat treatment remains unclear, making it challenging to design the heat treatment process and evaluate its effect comprehensively. In this study, microstructure characterization and a series of mechanical tests of 12Cr1MoV welded joint after the stress relief annealing (SRA) and tempering heat treatment (THT) were conducted. The effect of heat treatment on mechanical properties is analyzed based on the comparison between stress relief annealing and tempering heat treatment in terms of tensile properties, impact toughness, and impact fracture morphology. The results indicate that, after the tempering heat treatment, the evolution of mechanical properties in each subzone of the joint is consistent, i.e., the hardness and tensile strength decreased while the toughness increased. Notably, the most substantial enhancement in toughness is observed in the weld zone, primarily due to a significant reduction in the presence of pre-eutectoid ferrite. Furthermore, it is proved that hardness is an indicator to reflect changes in tensile strength related to the microstructure evolution, which indicates it can be employed to evaluate the effectiveness of post-weld heat treatment in practical engineering. Full article
(This article belongs to the Special Issue Advances in High-Strength Low-Alloy Steels (2nd Edition))
Show Figures

Figure 1

19 pages, 7917 KiB  
Article
Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds
by Sidharth Rajan, Priti Wanjara, Javad Gholipour and Abu Syed Kabir
Materials 2021, 14(11), 3136; https://doi.org/10.3390/ma14113136 - 7 Jun 2021
Cited by 12 | Viewed by 3284
Abstract
The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains [...] Read more.
The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains limited, especially for solid-state technologies such as linear friction welding (LFW). This paper presents the fatigue behavior of dissimilar titanium alloys, Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), joined by LFW with the aim of characterizing the stress versus number of cycles to failure (S-N) curves in both the low- and high-cycle fatigue regimes. Prior to fatigue testing, metallurgical characterization of the dissimilar alloy welds indicated softening in the heat-affected zone due to the retention of metastable β, and the typical practice of stress relief annealing (SRA) for alleviating the residual stresses was effective also in transforming the metastable β to equilibrated levels of α + β phases and recovering the hardness. Thus, the dissimilar alloy joints were fatigue-tested in the SRA (750 °C for 2 h) condition and their low- and high-cycle fatigue behaviors were compared to those of the Ti64 and Ti6242 base metals (BMs). The low-cycle fatigue (LCF) behavior of the dissimilar Ti6242–Ti64 linear friction welds was characterized by relatively high maximum stress values (~ 900 to 1100 MPa) and, in the high-cycle fatigue (HCF) regime, the fatigue limit of 450 MPa at 107 cycles was just slightly higher than that of the Ti6242 BM (434 MPa) and the Ti64 BM (445 MPa). Fatigue failure of the dissimilar titanium alloy welds in the low-cycle and high-cycle regimes occurred, respectively, on the Ti64 and Ti6242 sides, roughly 3 ± 1 mm away from the weld center, and the transitioning was reasoned based on the microstructural characteristics of the BMs. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Figure 1

21 pages, 11663 KiB  
Article
Microstructure, Tensile Properties, and Fatigue Behavior of Linear Friction-Welded Ti-6Al-2Sn-4Zr-2Mo-0.1Si
by Sidharth Rajan, Priti Wanjara, Javad Gholipour and Abu Syed Kabir
Materials 2021, 14(1), 30; https://doi.org/10.3390/ma14010030 - 23 Dec 2020
Cited by 16 | Viewed by 3935
Abstract
This paper presents the microstructural characteristics and mechanical properties of linear friction-welded (LFWed) Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) in as-welded (AWed) and stress relief-annealed (SRAed) conditions. The weld center (WC) of the AWed Ti-6242 consisted of recrystallized prior-β grains with α’ martensite that were tempered during [...] Read more.
This paper presents the microstructural characteristics and mechanical properties of linear friction-welded (LFWed) Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) in as-welded (AWed) and stress relief-annealed (SRAed) conditions. The weld center (WC) of the AWed Ti-6242 consisted of recrystallized prior-β grains with α’ martensite that were tempered during SRA at 800 °C for 2 h and transformed into an acicular α + β microstructure. The peak hardness values, obtained in the AWed joints at the WC, sharply decreased through the thermomechanically affected zones (TMAZs) to the heat-affected zone (HAZ) of the Ti-6242 parent metal (PM). The SRA lowered the peak hardness values at the WC slightly and fully recovered the observed softening in the HAZ. The tensile mechanical properties of the welds in the AWed and SRAed conditions surpassed the minimum requirements in the AMS specifications for the Ti-6242 alloy. Fatigue tests, performed on the SRAed welds, indicated a fatigue limit of 468 MPa at 107 cycles, just slightly higher than that of the Ti-6242 PM (434 MPa). During tensile and fatigue testing, the welds failed in the PM region, which confirms the high mechanical integrity of the joints. Both the tensile and fatigue fracture surfaces exhibited characteristic features of ductile Ti-6242 PM. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Alloys)
Show Figures

Figure 1

25 pages, 16020 KiB  
Article
Joining of Dissimilar Alloys Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Using Linear Friction Welding
by Sidharth Rajan, Priti Wanjara, Javad Gholipour and Abu Syed Kabir
Materials 2020, 13(17), 3664; https://doi.org/10.3390/ma13173664 - 19 Aug 2020
Cited by 29 | Viewed by 4231
Abstract
Dissimilar joints between Ti-6Al-4V (Ti-64) and Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) were manufactured using linear friction welding. The weld quality, in terms of the microstructure and mechanical properties, was investigated after stress relief annealing (SRA) at 750 °C for 2 h and compared with the as-welded [...] Read more.
Dissimilar joints between Ti-6Al-4V (Ti-64) and Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) were manufactured using linear friction welding. The weld quality, in terms of the microstructure and mechanical properties, was investigated after stress relief annealing (SRA) at 750 °C for 2 h and compared with the as-welded (AWed) results. The central weld zone (CWZ) microstructure in the AWed condition consisted of recrystallized prior-β grains with α’ martensite, which transformed into an acicular α+β structure after SRA. The hardness in the AWed condition was highest in the CWZ and decreased sharply through the thermomechanically affected zones (TMAZ) to the parent materials (PMs). After SRA, the hardness of the CWZ decreased, mainly due to tempering of the α’ martensite microstructure. Static tensile testing of the dissimilar welds in both the AWed and stress relief annealed (SRAed) conditions resulted in ductile fracture occurring exclusively in the Ti-6Al-4V side of the joint. The promising results on joining of Ti-64 to Ti-6242 provide valuable insight for tailoring performance of next-generation aero-engine products. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Alloys)
Show Figures

Figure 1

Back to TopTop