Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = strap combined footings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3465 KiB  
Article
Effects of Combined Vibration Ergometry and Botulinum Toxin on Gait Improvement in Asymmetric Lower Limb Spasticity: A Pilot Study
by Harald Hefter, Dietmar Rosenthal and Sara Samadzadeh
J. Funct. Morphol. Kinesiol. 2025, 10(1), 41; https://doi.org/10.3390/jfmk10010041 - 21 Jan 2025
Cited by 1 | Viewed by 911
Abstract
Objective: Botulinum neurotoxin type A (BoNT/A) injections and the new vibration ergometry training (VET) are studied for their combined effect on improving functional mobility in patients with asymmetric lower limb spasticity. Method: Gait was analyzed using the Infotronic® system, which measures ground [...] Read more.
Objective: Botulinum neurotoxin type A (BoNT/A) injections and the new vibration ergometry training (VET) are studied for their combined effect on improving functional mobility in patients with asymmetric lower limb spasticity. Method: Gait was analyzed using the Infotronic® system, which measures ground reaction forces and foot contact patterns by means of special force-sensitive shoes strapped over feet or street shoes. Gait was measured several times, depending on the protocol patients underwent. Seven patients with asymmetric lower limb spasticity were analyzed according to the control protocol (CG-group): after a baseline walk of 20 m (NV-W1) patients received their routine BoNT/A injection and had to walk the same distance a second time (NV-W2). Approximately 3–5 weeks later, they had to walk a third time (NV-W3). A further seven patients (VG-group) were analyzed according to the vibration protocol: after a baseline walk (V-W1), patients underwent a first vibration training (VET1), walked a second time (V-W2), received their routine BoNT/A injection, and walked a third time (V-W3). About four weeks later, they had to walk again (V-W4), received another vibration training (VET3), and walked a fifth time (V-W5). At least six months after the analysis according to the vibration protocol, these patients were also analyzed according to the control protocol. Eleven gait parameters were compared between the CG- and VG-group, and within the VG-group. Result: Patients in the VG-group experienced a significant improvement in gait four weeks after BoNT/A injection, unlike the patients in the CG-group. VG-patients also showed improved gait after two VET sessions. However, there was no further functional improvement of gait when BoNT/A injections and VET sessions were combined. Conclusions: BoNT/A injections enhance functional mobility in patients with mild asymmetric leg spasticity. VET also induces an immediate gait improvement and offers a further treatment approach for leg spasticity. Whether combining BoNT treatment and vibration training offers superior outcomes compared to either treatment alone requires further investigation. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

20 pages, 2315 KiB  
Article
Mathematical Modeling of the Optimal Cost for the Design of Strap Combined Footings
by Arnulfo Luévanos-Rojas, Griselda Santiago-Hurtado, Victor Manuel Moreno-Landeros, Francisco Javier Olguin-Coca, Luis Daimir López-León and Eyran Roberto Diaz-Gurrola
Mathematics 2024, 12(2), 294; https://doi.org/10.3390/math12020294 - 16 Jan 2024
Cited by 5 | Viewed by 1500
Abstract
This paper presents a novel mathematical model to determine the minimum cost for the design of reinforced-concrete strap combined footings under biaxial bending, with each column using a genetic algorithm. The pressure is assumed to be linearly distributed along the contact area. This [...] Read more.
This paper presents a novel mathematical model to determine the minimum cost for the design of reinforced-concrete strap combined footings under biaxial bending, with each column using a genetic algorithm. The pressure is assumed to be linearly distributed along the contact area. This study comprises two steps: firstly, identifying the smallest ground contact area, and secondly, minimizing the cost. The methodology integrates moment, bending shear, and punching shear calculations according to the ACI standard. Some authors present a smaller area (but limited to one or two property lines) and the design considers that the thickness of the footings and beam are equal, and do not show the lower cost of a strap combined footing; generally, the beam has a greater thickness than the footings and therefore the footings would have an unnecessary thickness that would generate a higher cost. A numerical example is shown to find the lowest cost for the design of strap combined footings considering four different conditions such as square footings and other limitation at the ends of the footings. The minimum area does not guarantee that it is the lowest cost. The proposed model is versatile, applicable to T-shaped and rectangular combined footings, and is not restricted to specific property lines. The contributions include eliminating trial and error practices, accommodating various design conditions, and emphasizing equilibrium in the derived equations. The model is adaptable to different building codes, offering a comprehensive approach to achieving optimal design and cost considerations for strap combined footings. Full article
(This article belongs to the Special Issue Advanced Computational Methods in Mechanics and Engineering)
Show Figures

Figure 1

14 pages, 5372 KiB  
Article
Revealing the Mutual Information between Body-Worn Sensors and Metabolic Cost in Running
by Tobias Baumgartner, Stefanie Klatt and Lars Donath
Sensors 2023, 23(4), 1756; https://doi.org/10.3390/s23041756 - 4 Feb 2023
Cited by 1 | Viewed by 2417
Abstract
Running power is a popular measure to gauge objective intensity. It has recently been shown, though, that foot-worn sensors alone cannot reflect variations in the exerted energy that stems from changes in the running economy. In order to support long-term improvement in running, [...] Read more.
Running power is a popular measure to gauge objective intensity. It has recently been shown, though, that foot-worn sensors alone cannot reflect variations in the exerted energy that stems from changes in the running economy. In order to support long-term improvement in running, these changes need to be taken into account. We propose leveraging the presence of two additional sensors worn by the most ambitious recreational runners for improved measurement: a watch and a heart rate chest strap. Using these accelerometers, which are already present and distributed over the athlete’s body, carries more information about metabolic demand than a single foot-worn sensor. In this work, we demonstrate the mutual information between acceleration data and the metabolic demand of running by leveraging the information bottleneck of a constrained convolutional neural network. We perform lab measurements on 29 ambitious recreational runners (age = 28 ± 7 years, weekly running distance = 50 ± 25 km, V˙O2max = 60.3 ± 7.4 mL · min−1·kg−1). We show that information about the metabolic demand of running is contained in kinetic data. Additionally, we prove that the combination of three sensors (foot, torso, and lower arm) carries significantly more information than a single foot-worn sensor. We advocate for the development of running power systems that incorporate the sensors in watches and chest straps to improve the validity of running power and, thereby, long-term training planning. Full article
(This article belongs to the Special Issue Sensor-Based Motion Analysis in Medicine, Rehabilitation and Sport)
Show Figures

Figure 1

Back to TopTop