Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = steamed ammonia liquid waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4122 KiB  
Article
A Green Approach to Preparing Vaterite CaCO3 for Clean Utilization of Steamed Ammonia Liquid Waste and CO2 Mineralization
by Xuewen Song, Yuxin Tuo, Dan Li, Xinrui Hua, Ruomeng Wang, Jiwei Xue, Renhe Yang, Xianzhong Bu and Xianping Luo
Sustainability 2023, 15(17), 13275; https://doi.org/10.3390/su151713275 - 4 Sep 2023
Cited by 5 | Viewed by 2057
Abstract
In the salt lake industry, large amounts of steamed ammonia liquid waste are discharged as byproducts. The conversion of the residues into high value-added vaterite-phase calcium carbonate products for industrial applications is highly desirable. In this research, the feasibility of preparing vaterite-phase CaCO [...] Read more.
In the salt lake industry, large amounts of steamed ammonia liquid waste are discharged as byproducts. The conversion of the residues into high value-added vaterite-phase calcium carbonate products for industrial applications is highly desirable. In this research, the feasibility of preparing vaterite-phase CaCO3 in different CaCl2-CO2-MOH-H2O systems using steamed ammonia liquid waste was studied in the absence of additives. The effects of initial CaCl2 concentration, stirring speed and CO2 flow rate on the composition of the CaCO3 crystal phase were investigated. The contents of vaterite were researched by the use of steamed ammonia liquid waste as a calcium source and pure calcium chloride as a contrast. The influence of the concentration of CNH3·H2O/CCa2+ on the carbonation ratio and crystal phase composition was studied. The reaction conditions on the content, particle size and morphology of vaterite influence were discussed. It was observed that single vaterite-phase CaCO3 was favored in the CaCl2-CO2-NH4OH-H2O system. Additionally, the impurity ions in steamed ammonia liquid waste play a key role in the nucleation and crystallization of vaterite, which could affect the formation of single-phase vaterite. The obtained results provided a novel method for the preparation of single vaterite particles with the utilization of CO2 and offered a selective method for the extensive utilization of steamed ammonia liquid waste. Full article
Show Figures

Figure 1

11 pages, 1825 KiB  
Perspective
Organic Waste Gasification by Ultra-Superheated Steam
by Sergey M. Frolov
Energies 2023, 16(1), 219; https://doi.org/10.3390/en16010219 - 25 Dec 2022
Cited by 8 | Viewed by 3288
Abstract
The perspective of the emerging environmentally friendly and economically efficient detonation gun technology for the high-temperature gasification of organic wastes with ultra-superheated mixture of steam and carbon dioxide is discussed. The technology is readily scalable and allows the establishment of a highly reactive [...] Read more.
The perspective of the emerging environmentally friendly and economically efficient detonation gun technology for the high-temperature gasification of organic wastes with ultra-superheated mixture of steam and carbon dioxide is discussed. The technology is readily scalable and allows the establishment of a highly reactive atmospheric-pressure environment in a compact water-cooled gasifier due to very high local temperature (above 2000 °C), intense in situ shock-induced fragmentation of feedstock, and high-speed vortical convective flows enhancing interphase exchange processes. These unique and distinctive features of the technology can potentially provide the complete conversion of solid and liquid wastes into syngas, consisting exclusively of hydrogen and carbon monoxide; microparticles, consisting of environmentally safe simple oxides and salts of mineral residues, as well as aqueous solutions of oxygen-free acids such as HCl, HF, H2S, etc., and ammonia NH3. A small part of the syngas product (ideally approximately 10%) can be used for replacing a starting fuel (e.g., natural gas) for the production of a detonation-born gasifying agent, while the rest can be utilized for the production of electricity, heat, and/or chemicals. Full article
(This article belongs to the Special Issue Energy Valorization of Sustainable Biomass and Bioresidues)
Show Figures

Figure 1

31 pages, 200 KiB  
Review
Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review
by Mohammad J. Taherzadeh and Keikhosro Karimi
Int. J. Mol. Sci. 2008, 9(9), 1621-1651; https://doi.org/10.3390/ijms9091621 - 1 Sep 2008
Cited by 2197 | Viewed by 77563
Abstract
Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of [...] Read more.
Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX), supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute- and concentrated-acid hydrolyses, and biological pretreatments. Full article
(This article belongs to the Special Issue Biofuels R&D: Securing the Planet's Future Energy Needs)
Show Figures

Back to TopTop