Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = stars individual: LS I +61°303

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 347 KiB  
Article
A Precessing Jet Scenario for the Multi-Wavelength Long-Term Modulation of LS I +61°303
by Frédéric Jaron
Universe 2021, 7(7), 245; https://doi.org/10.3390/universe7070245 - 14 Jul 2021
Cited by 7 | Viewed by 2090
Abstract
The high-mass X-ray binary LS I +61°303 is detected across the electromagnetic spectrum from radio until the very high energy γ-ray regime. The emission is not only highly variable on many time scales, but is also periodic at all observed wavelengths. Periodic [...] Read more.
The high-mass X-ray binary LS I +61°303 is detected across the electromagnetic spectrum from radio until the very high energy γ-ray regime. The emission is not only highly variable on many time scales, but is also periodic at all observed wavelengths. Periodic modulation was observed on different time-scales, ranging from hours, over months to several years. The subject of this article is a super-orbital, long-term modulation of ∼4.6 years. We review the observation of this periodic modulation at multiple wavelengths and investigate systematic relationships between them. IN particular, radio observations reveal that the long-term modulation is a very stable feature of the source. Observations at other wavelengths result in a phase-shift of the modulationpattern that is a systematic function of energy. The stability of this period favors a scenario in which the long-term modulation is the result of a precessing jet giving rise to periodic changes in the Doppler factor, beating with the orbital modulation of the accretion rate. We explain the phase-shifts across energy bands in a scenario with shorter wavelengths originating closer to the base of the presessing jet. A significant deviation of the TeV emission from this trend possibly requires a different explanation related to magnetic reconnection events. Full article
(This article belongs to the Special Issue Multi-Wavelength Properties of Gamma-Ray Binaries)
Show Figures

Figure 1

Back to TopTop