Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = starburst amacrine cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2111 KiB  
Article
Spontaneous Depolarization-Induced Action Potentials of ON-Starburst Amacrine Cells during Cholinergic and Glutamatergic Retinal Waves
by Rong-Shan Yan, Xiong-Li Yang, Yong-Mei Zhong and Dao-Qi Zhang
Cells 2020, 9(12), 2574; https://doi.org/10.3390/cells9122574 - 1 Dec 2020
Cited by 4 | Viewed by 2929
Abstract
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs [...] Read more.
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

20 pages, 4100 KiB  
Article
Characterization of the Frmd7 Knock-Out Mice Generated by the EUCOMM/COMP Repository as a Model for Idiopathic Infantile Nystagmus (IIN)
by Ahmed Salman, Samuel B. Hutton, Tutte Newall, Jennifer A. Scott, Helen L. Griffiths, Helena Lee, Diego Gomez-Nicola, Andrew J. Lotery and Jay E. Self
Genes 2020, 11(10), 1157; https://doi.org/10.3390/genes11101157 - 30 Sep 2020
Cited by 5 | Viewed by 3463
Abstract
In this study, we seek to exclude other pathophysiological mechanisms by which Frmd7 knock-down may cause Idiopathic Infantile Nystagmus (IIN) using the Frmd7.tm1a and Frmd7.tm1b murine models. We used a combination of genetic, histological and visual function techniques to characterize the [...] Read more.
In this study, we seek to exclude other pathophysiological mechanisms by which Frmd7 knock-down may cause Idiopathic Infantile Nystagmus (IIN) using the Frmd7.tm1a and Frmd7.tm1b murine models. We used a combination of genetic, histological and visual function techniques to characterize the role of Frmd7 gene in IIN using a novel murine model for the disease. We demonstrate that the Frmd7.tm1b allele represents a more robust model of Frmd7 knock-out at the mRNA level. The expression of Frmd7 was investigated using both antibody staining and X-gal staining confirming previous reports that Frmd7 expression in the retina is restricted to starburst amacrine cells and demonstrating that X-gal staining recapitulates the expression pattern in this model. Thus, it offers a useful tool for further expression studies. We also show that gross retinal morphology and electrophysiology are unchanged in these Frmd7 mutant models when compared with wild-type mice. High-speed eye-tracking recordings of Frmd7 mutant mice confirm a specific horizontal optokinetic reflex defect. In summary, our study confirms the likely role for Frmd7 in the optokinetic reflex in mice mediated by starburst amacrine cells. We show that the Frmd7.tm1b model provides a more robust knock-out than the Frmd7.tm1a model at the mRNA level, although the functional consequence is unchanged. Finally, we establish a robust eye-tracking technique in mice that can be used in a variety of future studies using this model and others. Although our data highlight a deficit in the optiokinetic reflex as a result of the starburst amacrine cells in the retina, this does not rule out the involvement of other cells, in the brain or the retina where Frmd7 is expressed, in the pathophysiology of IIN. Full article
(This article belongs to the Special Issue Genomics and Therapeutics of Hereditary Eye Disease)
Show Figures

Figure 1

Back to TopTop