Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = spring-loaded inverted pendulum (SLIP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7825 KB  
Article
Jump Control Based on Nonlinear Wheel-Spring-Loaded Inverted Pendulum Model: Validation of a Wheeled-Bipedal Robot with Single-Degree-of-Freedom Legs
by Jingsong Gao, Hongzhe Jin, Liang Gao, Yanhe Zhu, Jie Zhao and Hegao Cai
Biomimetics 2025, 10(4), 246; https://doi.org/10.3390/biomimetics10040246 - 17 Apr 2025
Cited by 1 | Viewed by 1389
Abstract
Jumping is a fundamental capability for wheeled-bipedal robots (WBRs) navigating unstructured terrains, with jump height and stability serving as indicators of the robot’s environmental adaptability. However, existing trajectory planning methods demand high output capacity from the joints and fail to balance computational load [...] Read more.
Jumping is a fundamental capability for wheeled-bipedal robots (WBRs) navigating unstructured terrains, with jump height and stability serving as indicators of the robot’s environmental adaptability. However, existing trajectory planning methods demand high output capacity from the joints and fail to balance computational load with trajectory tracking performance. This limitation hinders most robots from experimental validation. To address these challenges, this study presents an optimized virtual model, trajectory planning strategy, and control method. These solutions enhance both the height and stability of jumps while ensuring real-time execution on physical robots. Firstly, inspired by the human jumping mechanism, a Nonlinear Wheel-Spring-Loaded Inverted Pendulum (NW-SLIP) model was originally proposed as the virtual model for trajectory planning. The jump height is increased by 3.4 times compared to the linear spring model. Then, cost functions are established based on this virtual model, and the trajectory for each stage is iteratively optimized using Quadratic Programming (QP) and a bisection method. This leads to a 21.5% increase in the maximum jump height while reducing the peak joint torque by 14% at the same height. This significantly eases execution and enhances the robot’s trajectory-tracking ability. Subsequently, a leg statics model is introduced alongside the kinematics model to map the relationship between the virtual model and joint space. This approach improves trajectory tracking performance while circumventing the intricate calculation of the dynamics model, thereby enhancing jump consistency and stability. Finally, the proposed trajectory planning and jump control method is validated through both simulations and real-world experiments, demonstrating its feasibility and effectiveness in practical robotic applications. Full article
Show Figures

Graphical abstract

24 pages, 7365 KB  
Article
Running Gait and Control of Quadruped Robot Based on SLIP Model
by Xiaolong He, Xinjie Li, Xiangji Wang, Fantuo Meng, Xikang Guan, Zhenyu Jiang, Lipeng Yuan, Kaixian Ba, Guoliang Ma and Bin Yu
Biomimetics 2024, 9(1), 24; https://doi.org/10.3390/biomimetics9010024 - 3 Jan 2024
Cited by 8 | Viewed by 4362
Abstract
Legged robots have shown great adaptability to various environments. However, conventional walking gaits are insufficient to meet the motion requirements of robots. Therefore, achieving high-speed running for legged robots has become a significant research topic. In this paper, based on the Spring-Loaded Inverted [...] Read more.
Legged robots have shown great adaptability to various environments. However, conventional walking gaits are insufficient to meet the motion requirements of robots. Therefore, achieving high-speed running for legged robots has become a significant research topic. In this paper, based on the Spring-Loaded Inverted Pendulum (SLIP) model and the optimized Double leg—Spring-Loaded Inverted Pendulum (D-SLIP) model, the running control strategies for the double flying phase Bound gait and the Rotatory gallop gait of quadruped robots are designed. First, the dynamics of the double flying phase Bound gait and Rotatory gallop gait are analyzed. Then, based on the “three-way” control idea of the SLIP model, the running control strategy for the double flying phase Bound gait is designed. Subsequently, the SLIP model is optimized to derive the D-SLIP model with two touchdown legs, and its dynamic characteristics are analyzed. And the D-SLIP model is applied to the running control strategy of the Rotatory gallop gait. Furthermore, joint simulation verification is conducted using Adams virtual prototyping and MATLAB/Simulink control systems for the designed control strategies. Finally, experimental verification is performed for the double flying phase Bound gait running control strategy. The experimental results demonstrate that the quadruped robot can achieve high-speed and stable running. Full article
(This article belongs to the Special Issue Biology for Robotics and Robotics for Biology)
Show Figures

Figure 1

20 pages, 3783 KB  
Article
Stable and Fast Planar Jumping Control Design for a Compliant One-Legged Robot
by Guifu Luo, Ruilong Du, Sumian Song, Haihui Yuan, Zhiyong Huang, Hua Zhou and Jason Gu
Micromachines 2022, 13(8), 1261; https://doi.org/10.3390/mi13081261 - 5 Aug 2022
Cited by 4 | Viewed by 2990
Abstract
Compliant bipedal robots demonstrate a potential for impact resistance and high energy efficiency through the introduction of compliant elements. However, it also adds to the difficulty of stable control of the robot. To motivate the control strategies of compliant bipedal robots, this work [...] Read more.
Compliant bipedal robots demonstrate a potential for impact resistance and high energy efficiency through the introduction of compliant elements. However, it also adds to the difficulty of stable control of the robot. To motivate the control strategies of compliant bipedal robots, this work presents an improved control strategy for the stable and fast planar jumping of a compliant one-legged robot designed by the authors, which utilizes the concept of the virtual pendulum. The robot was modeled as an extended spring-loaded inverted pendulum (SLIP) model with non-negligible torso inertia, leg inertia, and leg damping. To enable the robot to jump forward stably, a foot placement method was adopted, where due to the asymmetric feature of the extended SLIP model, a variable time coefficient and an integral term with respect to the forward speed tracking error were introduced to the method to accurately track a given forward speed. An energy-based leg rest length regulation method was used to compensate for the energy dissipation due to leg damping, where an integral term, regarding jumping height tracking error, was introduced to accurately track a given jumping height. Numerical simulations were conducted to validate the effectiveness of the proposed control strategy. Results show that stable and fast jumping of compliant one-legged robots could be achieved, and the desired forward speed and jumping height could also be accurately tracked. In addition to that, using the proposed control strategy, the robust jumping performance of the robot could be observed in the presence of disturbances from state variables or uneven terrain. Full article
(This article belongs to the Special Issue New Advances in Biomimetic Robots)
Show Figures

Figure 1

17 pages, 5264 KB  
Article
Biped Walking Based on Stiffness Optimization and Hierarchical Quadratic Programming
by Xuanyang Shi, Junyao Gao, Yizhou Lu, Dingkui Tian and Yi Liu
Sensors 2021, 21(5), 1696; https://doi.org/10.3390/s21051696 - 2 Mar 2021
Cited by 12 | Viewed by 3950
Abstract
The spring-loaded inverted pendulum model is similar to human walking in terms of the center of mass (CoM) trajectory and the ground reaction force. It is thus widely used in humanoid robot motion planning. A method that uses a velocity feedback controller to [...] Read more.
The spring-loaded inverted pendulum model is similar to human walking in terms of the center of mass (CoM) trajectory and the ground reaction force. It is thus widely used in humanoid robot motion planning. A method that uses a velocity feedback controller to adjust the landing point of a robot leg is inaccurate in the presence of disturbances and a nonlinear optimization method with multiple variables is complicated and thus unsuitable for real-time control. In this paper, to achieve real-time optimization, a CoM-velocity feedback controller is used to calculate the virtual landing point. We construct a touchdown return map based on a virtual landing point and use nonlinear least squares to optimize spring stiffness. For robot whole-body control, hierarchical quadratic programming optimization is used to achieve strict task priority. The dynamic equation is given the highest priority and inverse dynamics are directly used to solve it, reducing the number of optimizations. Simulation and experimental results show that a force-controlled biped robot with the proposed method can stably walk on unknown uneven ground with a maximum obstacle height of 5 cm. The robot can recover from a 5 Nm disturbance during walking without falling. Full article
(This article belongs to the Special Issue Autonomous Mobile Robots: Real-Time Sensing, Navigation, and Control)
Show Figures

Figure 1

Back to TopTop