Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = sprayable sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4617 KB  
Communication
Assessing Wear Characteristics of Sprayable, Diacetylene-Containing Sensor Formulations
by Priyanka Shiveshwarkar, Anthony David Nelson, My Thi Nguyen and Justyn Jaworski
Sensors 2024, 24(21), 6925; https://doi.org/10.3390/s24216925 - 29 Oct 2024
Cited by 1 | Viewed by 980
Abstract
This work extends recent developments in diacetylene-based, sprayable sensors by identification and assessment of formulations which facilitate their use for wearable sensing. Diacetylene-based spray-on sensors have the potential to be a widely deployed sensing technology, as they require no power and can be [...] Read more.
This work extends recent developments in diacetylene-based, sprayable sensors by identification and assessment of formulations which facilitate their use for wearable sensing. Diacetylene-based spray-on sensors have the potential to be a widely deployed sensing technology, as they require no power and can be applied as thin coatings onto surfaces to provide a colorimetric response to target exposure. In responding to radiation, liquid-phase targets, or gas-phase targets specifically determined by the formulation of the sprayable sensor used, this technology is amenable to wearable sensors for measuring exposure to different environmental risks. Here, we provide the means to improve wear resistance, reduce false-positive signals due to wetting, and enhance color fastness for coatings of sprayable, diacetylene-based sensor formulations on cotton fabric. These sensor formulations possess polymethyl methacrylate (PMMA), which enhances the coating stability to only 8% color loss due to wear compared to 18–25% without PMMA, while maintaining the inherent ability of diacetylene-component formulations to detect radiation as well as gas or liquid phase analytes. This represents a significant step toward the use of diacetylene-based sensing formulations for wearable sensing. In the future, the form of spray-on sensor materials demonstrated here may find use in wearable sensing applications for detection of cumulative exposure to UV radiation, hydrogen peroxide vapors, or solvent exposure. We expect trends toward applications toward other wearable sensors for environmental monitoring given the well-known customizability in target response of diacetylene-containing monomers by modifying their headgroup chemistry. Full article
Show Figures

Figure 1

12 pages, 1901 KB  
Article
Sprayable Diacetylene-Containing Amphiphile Coatings for Visual Detection of Gas-Phase Hydrogen Peroxide
by Priyanka Shiveshwarkar and Justyn Jaworski
Chemosensors 2024, 12(5), 71; https://doi.org/10.3390/chemosensors12050071 - 1 May 2024
Cited by 1 | Viewed by 1875
Abstract
Colorimetric chemical sensing of target gases, such as hydrogen peroxide vapors, is an evolving area of research that implements responsive materials that undergo molecule-specific interaction, resulting in a visible color change. Due to the intuitive nature of an observable color change, such sensing [...] Read more.
Colorimetric chemical sensing of target gases, such as hydrogen peroxide vapors, is an evolving area of research that implements responsive materials that undergo molecule-specific interaction, resulting in a visible color change. Due to the intuitive nature of an observable color change, such sensing systems are particularly desirable as they can be widely deployed at low cost and without the need for complex analytical instrumentation. In this work, we describe our development of a new spray-on sensing material that can provide a colorimetric response to the presence of a gas-phase target, specifically hydrogen peroxide vapor. By providing a cumulative response over time, we identified that part per million concentrations of hydrogen peroxide vapor can be detected. Specifically, we make use of iron chloride-containing formulations to enable the catalysis of hydrogen peroxide to hydroxyl radicals that serve to initiate polymerization of the diacetylene-containing amphiphile, resulting in a white to blue color transition. Due to the irreversible nature of the color change mechanism, the cumulative exposure to hydrogen peroxide over time is demonstrated, enabling longitudinal assessment of target exposure with the same coatings. The versatility of this approach in generating a colorimetric response to hydrogen peroxide vapor may find practical applications for environmental monitoring, diagnostics, or even industrial safety. Full article
Show Figures

Figure 1

12 pages, 4063 KB  
Article
Longitudinal Degradation of Pavement Marking Detectability for Mobile LiDAR Sensing Technology in Real-World Use
by Byoung-Keon D. Park, James R. Sayer, André D. Clover and Matthew P. Reed
Sensors 2023, 23(13), 5815; https://doi.org/10.3390/s23135815 - 22 Jun 2023
Cited by 2 | Viewed by 1743
Abstract
Recent advancements in vehicle automation and driver-assistance systems that detect pavement markings has increased the importance of the detectability of pavement markings through various sensor modalities across weather and road conditions. Among the sensing techniques, light detection and ranging (LiDAR) sensors have become [...] Read more.
Recent advancements in vehicle automation and driver-assistance systems that detect pavement markings has increased the importance of the detectability of pavement markings through various sensor modalities across weather and road conditions. Among the sensing techniques, light detection and ranging (LiDAR) sensors have become popular for vehicle-automation applications. This study used low-cost mobile multi-beam LiDAR to assess the performance of several types of pavement marking materials installed on a limited-access highway in various conditions, and quantified the degradation in detection performance over three years. Four marking materials, HPS-8, polyurea, cold plastic, and sprayable thermoplastic, were analyzed in the current study. LiDAR reflectivity data extracted from a total of 210 passes through the test sections were analyzed. A new detectability score based on LiDAR intensity data was proposed to quantify the marking detectability. The results showed that the pavement marking detectability varied across the material types over the years. The results provide guidance for selecting materials and developing maintenance schedules when marking detectability by LiDAR is a concern. Full article
Show Figures

Figure 1

13 pages, 1866 KB  
Article
Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions
by Priyanka Shiveshwarkar and Justyn Jaworski
Chemosensors 2023, 11(6), 327; https://doi.org/10.3390/chemosensors11060327 - 2 Jun 2023
Cited by 4 | Viewed by 2784
Abstract
Sprayable stimuli-responsive material coatings represent a new class of detection system which can be quickly implemented to transform a surface into a color-responsive sensor. In this work, we describe a dipicolylamine-terminated diacetylene-containing amphiphile formulation for spray coating on to a simple paper substrate [...] Read more.
Sprayable stimuli-responsive material coatings represent a new class of detection system which can be quickly implemented to transform a surface into a color-responsive sensor. In this work, we describe a dipicolylamine-terminated diacetylene-containing amphiphile formulation for spray coating on to a simple paper substrate to yield disposable test strips that can be used to detect the presence of lead ions in solution. We find the response to be very selective to only lead ions and that the sensitivity can be modulated by altering the UV curing time after spraying. Sensitive detection to at least 0.1 mM revealed a clear color change from a blue to red phase. This represents the first demonstration of a spray-on sensor system capable of detection of lead ions in solution. Full article
(This article belongs to the Special Issue Chemosensors for Ion Detection)
Show Figures

Figure 1

15 pages, 8969 KB  
Article
An Ultra-Fast TSP on a CNT Heating Layer for Unsteady Temperature and Heat Flux Measurements in Subsonic Flows
by Martin Bitter, Michael Hilfer, Tobias Schubert, Christian Klein and Reinhard Niehuis
Sensors 2022, 22(2), 657; https://doi.org/10.3390/s22020657 - 15 Jan 2022
Cited by 9 | Viewed by 2481
Abstract
In this paper, the authors demonstrate the application of a modified Ru(phen)-based temperature-sensitive paint which was originally developed for the evaluation of unsteady aero-thermodynamic phenomena in high Mach number but short duration experiments. In the present work, the modified TSP with a temperature [...] Read more.
In this paper, the authors demonstrate the application of a modified Ru(phen)-based temperature-sensitive paint which was originally developed for the evaluation of unsteady aero-thermodynamic phenomena in high Mach number but short duration experiments. In the present work, the modified TSP with a temperature sensitivity of up to −5.6%/K was applied in a low Mach number long-duration test case in a low-pressure environment. For the demonstration of the paint’s performance, a flat plate with a mounted cylinder was set up in the High-Speed Cascade Wind Tunnel (HGK). The test case was designed to generate vortex shedding frequencies up to 4300 Hz which were sampled using a high-speed camera at 40 kHz frame rate to resolve unsteady surface temperature fields for potential heat-transfer estimations. The experiments were carried out at reduced ambient pressure of p = 13.8 kPa for three inflow Mach numbers being Ma=[0.3;0.5;0.7]. In order to enable the resolution of very low temperature fluctuations down to the noise floor of 105 K with high spatial and temporal resolution, the flat plate model was equipped with a sprayable carbon nanotube (CNT) heating layer. This constellation, together with the thermal sensors incorporated in the model, allowed for the calculation of a quasi-heat-transfer coefficient from the surface temperature fields. Besides the results of the experiments, the paper highlights the properties of the modified TSP as well as the methodology. Full article
(This article belongs to the Special Issue Optical Sensors for Flow Diagnostics)
Show Figures

Figure 1

20 pages, 4036 KB  
Review
Advanced Hydrogels as Wound Dressings
by Shima Tavakoli and Agnes S. Klar
Biomolecules 2020, 10(8), 1169; https://doi.org/10.3390/biom10081169 - 11 Aug 2020
Cited by 449 | Viewed by 23319
Abstract
Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of [...] Read more.
Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue engineering, in recent years, to develop new skin substitutes. Among them, hydrogels are one of the candidates with most potential to mimic the native skin microenvironment, due to their porous and hydrated molecular structure. They can be applied as a permanent or temporary dressing for different wounds to support the regeneration and healing of the injured epidermis, dermis, or both. Based on the material used for their fabrication, hydrogels can be subdivided into two main groups—natural and synthetic. Moreover, hydrogels can be reinforced by incorporating nanoparticles to obtain “in situ” hybrid hydrogels, showing superior properties and tailored functionality. In addition, different sensors can be embedded in hydrogel wound dressings to provide real-time information about the wound environment. This review focuses on the most recent developments in the field of hydrogel-based skin substitutes for skin replacement. In particular, we discuss the synthesis, fabrication, and biomedical application of novel “smart” hydrogels. Full article
Show Figures

Figure 1

Back to TopTop