Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = spray-dried microsystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5511 KB  
Article
Development of Cyclodextrin-Based Mono and Dual Encapsulated Powders by Spray Drying for Successful Preservation of Everlasting Flower Extract
by Nada Ćujić Nikolić, Miloš Jovanović, Milica Radan, Zorica Lazarević, Dubravka Bigović, Smilja Marković, Nataša Jovanović Lješković and Katarina Šavikin
Pharmaceutics 2024, 16(7), 861; https://doi.org/10.3390/pharmaceutics16070861 - 27 Jun 2024
Cited by 4 | Viewed by 4803
Abstract
The study aimed to develop encapsulation systems to maintain the preservation of everlasting (Helichrysum plicatum) flower extract polyphenols. Spray-dried encapsulates were formulated using β-cyclodextrin (BCD) and 2-hydroxypropyl-β-cyclodextrin (HPBCD) as supramolecular hosts, and their macromolecule mixtures with the conventional carriers, maltodextrin (MD) [...] Read more.
The study aimed to develop encapsulation systems to maintain the preservation of everlasting (Helichrysum plicatum) flower extract polyphenols. Spray-dried encapsulates were formulated using β-cyclodextrin (BCD) and 2-hydroxypropyl-β-cyclodextrin (HPBCD) as supramolecular hosts, and their macromolecule mixtures with the conventional carriers, maltodextrin (MD) and whey protein (WP). The obtained microparticles were comparatively assessed regarding technological, physicochemical, and phytochemical properties. The highest yields were achieved by combining cyclodextrins with whey protein (73.96% for WP+BCD and 75.50% for WP+HPBCD compared to 62.48% of pure extract). The extract–carrier interactions and thermal stability were evaluated by FTIR and DSC analysis, suggesting successful entrapment within the carriers. Carriers reduced the particle diameter (3.99 to 4.86 μm compared to 6.49 μm of pure extract), classifying all encapsulates as microsystems. Carrier blends made the particle size distribution uniform, while SEM analysis revealed the production of more spherical and less aggregated particles. The HPBCD provided the highest encapsulation efficiency, with the highest content of detected aglycones and slightly lower values of their glycosylated forms. An analysis of the dual macromolecule encapsulation systems revealed the highest bioactive preservation potential for SHE+MD+BCD and SHE+WP+HPBCD. Overall, macromolecule combinations of cyclodextrins and conventional biopolymers in the spray-drying process can enhance the functional properties of H. plicatum extract. Full article
(This article belongs to the Special Issue Spray Drying in the Pharmaceutical and Nutraceutical Field)
Show Figures

Graphical abstract

16 pages, 1418 KB  
Article
A Green Bioactive By-Product Almond Skin Functional Extract for Developing Nutraceutical Formulations with Potential Antimetabolic Activity
by Patrizia Picerno, Lucia Crascì, Patrizia Iannece, Tiziana Esposito, Silvia Franceschelli, Michela Pecoraro, Virgilio Giannone, Anna Maria Panico, Rita Patrizia Aquino and Maria Rosaria Lauro
Molecules 2023, 28(23), 7913; https://doi.org/10.3390/molecules28237913 - 3 Dec 2023
Cited by 9 | Viewed by 3373
Abstract
(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a “green” dry aqueous extract [...] Read more.
(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a “green” dry aqueous extract from Sicilian almond peels, a waste product of the food industry, and to develop healthy nutraceuticals with natural ingredients. Eudraguard® Natural is a natural coating polymer chosen to develop atomized formulations that improve the technological properties of the extract. (2) Methods: the antioxidant and free radical scavenger activity of the extract was rated using different methods (DPPH assay, ABTS, ORAC, NO). The metalloproteinases of the extracts (MMP-2 and MMP-9), the enhanced inhibition of the final glycation products, and the effects of the compounds on cell viability were also tested. All pure materials and formulations were characterized using UV, HPLC, FTIR, DSC, and SEM methods. (3) Results: almond peel extract showed appreciable antioxidant and free radical activity with a stronger NO inhibition effect, strong activity on MMP-2, and good antiglycative effects. In light of this, a food supplement with added health value was formulated. Eudraguard® Natural acted as a swelling substrate by improving extract solubility and dissolution/release (4) Conclusions: almond peel extract has significant antioxidant activity and MMP/AGE inhibition effects, resulting in an optimal candidate to formulate safe microsystems with potential antimetabolic activity. Eudraguard® Natural is capable of obtaining spray-dried microsystems with an improvement in the extract‘s biological and technological characteristics. It also protects the dry extract from degradation and oxidation, prolonging the shelf life of the final product. Full article
Show Figures

Figure 1

23 pages, 5443 KB  
Article
Study on Ajuga reptans Extract: A Natural Antioxidant in Microencapsulated Powder Form as an Active Ingredient for Nutraceutical or Pharmaceutical Purposes
by Tiziana Esposito, Francesca Sansone, Giulia Auriemma, Silvia Franceschelli, Michela Pecoraro, Patrizia Picerno, Rita P. Aquino and Teresa Mencherini
Pharmaceutics 2020, 12(7), 671; https://doi.org/10.3390/pharmaceutics12070671 - 17 Jul 2020
Cited by 19 | Viewed by 4152
Abstract
The administration of natural antioxidants is considered to be a prevention strategy for chronic diseases and a useful tool for the healthcare system to reduce the administration of expensive and often not effective treatments. The chemical characterization of a methanolic extract (AJ) of [...] Read more.
The administration of natural antioxidants is considered to be a prevention strategy for chronic diseases and a useful tool for the healthcare system to reduce the administration of expensive and often not effective treatments. The chemical characterization of a methanolic extract (AJ) of Ajuga reptans L. was performed, and its antioxidant activity was evaluated. AJ and the major compounds, characterized by chromatographic techniques as phenylpropanoids and iridoids, were able to reduce the Reactive Oxygen Species levels in cancer cell lines (melanoma, A375, cervical cancer, HeLa, and alveolar adenocarcinoma, A549), stimulated by E. coli lipopolysaccharide. However, a clinical translation of these results encountered a significant limitation represented by the poor water solubility and bioavailability of the extract and compounds. Consequently, a hydro-soluble powder system (AJEP3) was developed by spray-drying encapsulating AJ into a multi-component solid matrix that is based on L-proline and hydroxyethylcellulose as loading and coating agents, and lecithin as solubility enhancer. The technological approach led to a satisfactory process yield (71.5%), encapsulation efficiency (99.9%), and stability. The in vitro water dissolution rate of the bioactive compounds appeared to be improved with respect to the extract, suggesting higher feasibility in the manufacturing and administration; even the in vitro biological activity of the produced multi-component AJEP3 was clearly enhanced. Full article
Show Figures

Graphical abstract

19 pages, 3556 KB  
Article
Design and Development of Spray-Dried Microsystems to Improve Technological and Functional Properties of Bioactive Compounds from Hazelnut Shells
by Tiziana Esposito, Teresa Mencherini, Pasquale Del Gaudio, Giulia Auriemma, Silvia Franceschelli, Patrizia Picerno, Rita P. Aquino and Francesca Sansone
Molecules 2020, 25(6), 1273; https://doi.org/10.3390/molecules25061273 - 11 Mar 2020
Cited by 17 | Viewed by 3690
Abstract
An extract obtained from hazelnut shells by-products (HSE) has antioxidant and chemopreventive effects on human melanoma and cervical cancer cell lines, inducing apoptosis by caspase-3 activation. A clinical translation is limited by poor water solubility and low bioavailability. Dried plant extracts often show [...] Read more.
An extract obtained from hazelnut shells by-products (HSE) has antioxidant and chemopreventive effects on human melanoma and cervical cancer cell lines, inducing apoptosis by caspase-3 activation. A clinical translation is limited by poor water solubility and low bioavailability. Dried plant extracts often show critical characteristics such as sticky/gummy appearance, unpleasant smell, and instability involving practical difficulties in processing for industrial use. A spray drying method has been applied to transform raw HSE in a microparticulate powder. The biopolymeric matrix was based on l-proline as loading carrier, hydroxyethylcellulose in combination with pectin as coating polymers; lecithin and ethanol were used as solubility enhancers. A Hot-Cold-Hot method was selected to prepare the liquid feed. The thus prepared powder showed good technological properties (solid-state, particle dimensions, morphology, and water dissolution rate), stability, and unchanged chemopreventive effects with respect to the unprocessed HSE. Full article
Show Figures

Graphical abstract

Back to TopTop