Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = spatio-temporal dynamics of tumour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7985 KB  
Article
Reaction-Diffusion Model of CAR-T Cell Therapy in Solid Tumours with Antigen Escape
by Maxim V. Polyakov and Elena I. Tuchina
Computation 2026, 14(1), 3; https://doi.org/10.3390/computation14010003 (registering DOI) - 30 Dec 2025
Abstract
Developing effective CAR-T cell therapy for solid tumours remains challenging because of biological barriers such as antigen escape and an immunosuppressive microenvironment. The aim of this study is to develop a mathematical model of the spatio-temporal dynamics of tumour processes in order to [...] Read more.
Developing effective CAR-T cell therapy for solid tumours remains challenging because of biological barriers such as antigen escape and an immunosuppressive microenvironment. The aim of this study is to develop a mathematical model of the spatio-temporal dynamics of tumour processes in order to assess key factors that limit treatment efficacy. We propose a reaction–diffusion model described by a system of partial differential equations for the densities of tumour cells and CAR-T cells, the concentration of immune inhibitors, and the degree of antigen escape. The methods of investigation include stability analysis and numerical solution of the model using a finite-difference scheme. The simulations show that antigen escape produces a resistant tumour core and relapse after an initial regression; increasing the escape rate from γ=0.001 to 0.1 increases the final tumour volume at t=100 days from approximately 35.3 a.u. to 36.2 a.u. Parameter mapping further indicates that for γ0.01 tumour control can be achieved at moderate killing rates (kCT1day1), whereas for γ0.05 comparable control requires kCT25day1. Repeated CAR-T administration improves durability: the residual normalised tumour volume at t=100 days decreases from approximately 4.5 after a single infusion to approximately 0.9 (double) and approximately 0.5 (triple), with a saturating benefit for further intensification. We conclude that the proposed model is a valuable tool for analysing and optimising CAR-T therapy protocols, and that our results highlight the need for combined strategies aimed at overcoming antigen escape. Full article
(This article belongs to the Section Computational Biology)
20 pages, 1192 KB  
Review
Unveiling Matrix Metalloproteinase 13’s Dynamic Role in Breast Cancer: A Link to Physical Changes and Prognostic Modulation
by Xiaomeng Sun and Xiaojuan Hu
Int. J. Mol. Sci. 2025, 26(7), 3083; https://doi.org/10.3390/ijms26073083 - 27 Mar 2025
Cited by 3 | Viewed by 2503
Abstract
The biomechanical properties of the extracellular matrix (ECM) including its stiffness, viscoelasticity, collagen architecture, and temperature constitute critical biomechanical cues governing breast cancer progression. Matrix metalloproteinase 13 (MMP13) is an important marker of breast cancer and plays important roles in matrix remodelling and [...] Read more.
The biomechanical properties of the extracellular matrix (ECM) including its stiffness, viscoelasticity, collagen architecture, and temperature constitute critical biomechanical cues governing breast cancer progression. Matrix metalloproteinase 13 (MMP13) is an important marker of breast cancer and plays important roles in matrix remodelling and cell metastasis. Emerging evidence highlights MMP13 as a dynamic modulator of the ECM’s physical characteristics through dual mechanoregulatory mechanisms. While MMP13-mediated collagen degradation facilitates microenvironmental softening, thus promoting tumour cell invasion, paradoxically, its crosstalk with cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) drives pathological stromal stiffening via aberrant matrix deposition and crosslinking. This biomechanical duality is amplified through feedforward loops with an epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) populations, mediated by signalling axes such as TGF-β/Runx2. Intriguingly, MMP13 exhibits context-dependent mechanomodulatory effects, demonstrating anti-fibrotic activity and inhibiting the metastasis of breast cancer. At the same time, angiogenesis and increased metabolism are important mechanisms through which MMP13 promotes a temperature increase in breast cancer. Targeting the spatiotemporal regulation of MMP13’s mechanobiological functions may offer novel therapeutic strategies for disrupting the tumour–stroma vicious cycle. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 1136 KB  
Review
Organoids as an Enabler of Precision Immuno-Oncology
by Junzhe Zhao, Antoinette Fong, See Voon Seow and Han Chong Toh
Cells 2023, 12(8), 1165; https://doi.org/10.3390/cells12081165 - 14 Apr 2023
Cited by 7 | Viewed by 5363
Abstract
Since the dawn of the past century, landmark discoveries in cell-mediated immunity have led to a greater understanding of the innate and adaptive immune systems and revolutionised the treatment of countless diseases, including cancer. Today, precision immuno-oncology (I/O) involves not only targeting immune [...] Read more.
Since the dawn of the past century, landmark discoveries in cell-mediated immunity have led to a greater understanding of the innate and adaptive immune systems and revolutionised the treatment of countless diseases, including cancer. Today, precision immuno-oncology (I/O) involves not only targeting immune checkpoints that inhibit T-cell immunity but also harnessing immune cell therapies. The limited efficacy in some cancers results mainly from a complex tumour microenvironment (TME) that, in addition to adaptive immune cells, comprises innate myeloid and lymphoid cells, cancer-associated fibroblasts, and the tumour vasculature that contribute towards immune evasion. As the complexity of TME has called for more sophisticated human-based tumour models, organoids have allowed the dynamic study of spatiotemporal interactions between tumour cells and individual TME cell types. Here, we discuss how organoids can study the TME across cancers and how these features may improve precision I/O. We outline the approaches to preserve or recapitulate the TME in tumour organoids and discuss their potential, advantages, and limitations. We will discuss future directions of organoid research in understanding cancer immunology in-depth and identifying novel I/O targets and treatment strategies. Full article
Show Figures

Figure 1

19 pages, 82686 KB  
Article
Longitudinal Monitoring of Intra-Tumoural Heterogeneity Using Optical Barcoding of Patient-Derived Colorectal Tumour Models
by Carolyn Shembrey, Jai Smith, Mélodie Grandin, Nathalia Williams, Hyun-Jung Cho, Christina Mølck, Corina Behrenbruch, Benjamin NJ. Thomson, Alexander G. Heriot, Delphine Merino and Frédéric Hollande
Cancers 2022, 14(3), 581; https://doi.org/10.3390/cancers14030581 - 24 Jan 2022
Cited by 7 | Viewed by 5092
Abstract
Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a [...] Read more.
Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a fluorescent lineage technique termed “optical barcoding” (OBC) to perform simultaneous longitudinal tracking of spatio-temporal fate in 64 patient-derived colorectal cancer subclones. To do so, patient-derived cancer cell lines and organoids were labelled with discrete combinations of reporter constructs, stably integrated into the genome and thus passed on from the founder cell to all its clonal descendants. This strategy enables the longitudinal monitoring of individual cell lineages based upon their unique optical barcodes. By designing a novel panel of six fluorescent proteins, the maximum theoretical subpopulation resolution of 64 discriminable subpopulations was achieved, greatly improving throughput compared with previous studies. We demonstrate that all subpopulations can be purified from complex clonal mixtures via flow cytometry, permitting the downstream isolation and analysis of any lineages of interest. Moreover, we outline an optimized imaging protocol that can be used to image optical barcodes in real-time, allowing for clonal dynamics to be resolved in live cells. In contrast with the limited intra-tumour heterogeneity observed in conventional 2D cell lines, the OBC technique was successfully used to quantify dynamic clonal expansions and contractions in 3D patient-derived organoids, which were previously demonstrated to better recapitulate the heterogeneity of their parental tumour material. In summary, we present OBC as a user-friendly, inexpensive, and high-throughput technique for monitoring intra-tumoural heterogeneity in in vitro cell culture models. Full article
Show Figures

Figure 1

13 pages, 6143 KB  
Article
Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM
by George Chennell, Robin J. W. Willows, Sean C. Warren, David Carling, Paul M. W. French, Chris Dunsby and Alessandro Sardini
Sensors 2016, 16(8), 1312; https://doi.org/10.3390/s16081312 - 19 Aug 2016
Cited by 14 | Viewed by 9715
Abstract
We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 [...] Read more.
We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. Full article
(This article belongs to the Special Issue FRET Biosensors)
Show Figures

Figure 1

Back to TopTop