Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = soundfield microphone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 31042 KiB  
Article
Room Impulse Response Dataset of a Recording Studio with Variable Wall Paneling Measured Using a 32-Channel Spherical Microphone Array and a B-Format Microphone Array
by Grace Chesworth, Amy Bastine and Thushara Abhayapala
Appl. Sci. 2024, 14(5), 2095; https://doi.org/10.3390/app14052095 - 2 Mar 2024
Viewed by 2161
Abstract
This paper introduces RSoANU, a dataset of real multichannel room impulse responses (RIRs) obtained in a recording studio. Compared to the current publicly available datasets, RSoANU distinguishes itself by featuring RIRs captured using both a 32-channel spherical microphone array (mh acoustics em32 Eigenmike) [...] Read more.
This paper introduces RSoANU, a dataset of real multichannel room impulse responses (RIRs) obtained in a recording studio. Compared to the current publicly available datasets, RSoANU distinguishes itself by featuring RIRs captured using both a 32-channel spherical microphone array (mh acoustics em32 Eigenmike) and a B-format soundfield microphone array (Rode NT-SF1). The studio incorporates variable wall panels in felt and wood options, with measurements conducted for two configurations: all panels set to wood or felt. Three source positions that emulate typical performance locations were considered. RIRs were collected over a planar receiver grid spanning the room, with the microphone array centered at a height of 1.7 m. The paper includes an analysis of acoustic parameters derived from the dataset, revealing notable distinctions between felt and wood panel environments. Felt panels exhibit faster decay, higher clarity, and superior definition in mid-to-high frequencies. The analysis across the receiver grid emphasizes the impact of room geometry and source–receiver positions on reverberation time and clarity. The study also notes spatial variations in parameters obtained from the two microphone arrays, suggesting potential for future research into their specific capabilities for room acoustic characterization. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

12 pages, 10818 KiB  
Article
Optimization of Ultrasonic Acoustic Standing Wave Systems
by Paul Dunst, Tobias Hemsel, Peter Bornmann, Walter Littmann and Walter Sextro
Actuators 2020, 9(1), 9; https://doi.org/10.3390/act9010009 - 14 Feb 2020
Cited by 10 | Viewed by 8025
Abstract
Ultrasonic acoustic standing wave systems find use in many industrial applications, such as sonochemical reactions, atomization of liquids, ultrasonic cleaning, and spray dry. In most applications, highest possible sound pressure levels are needed to achieve optimum results. Until now, the atomization of liquids [...] Read more.
Ultrasonic acoustic standing wave systems find use in many industrial applications, such as sonochemical reactions, atomization of liquids, ultrasonic cleaning, and spray dry. In most applications, highest possible sound pressure levels are needed to achieve optimum results. Until now, the atomization of liquids is limited to fluids with low viscosity, as systems generating sufficient sound pressure for atomizing fluids with higher viscosities are often not marketable due to their low throughput or high costs. For the production of polymer or metal powders or the dispensing of adhesives, highest sound pressures should be achieved with systems in suitable size, with good efficiency and at low cost but without contamination of sonotrodes and reflectors by the dispersed media. An alternative to the use of more powerful transducers is increasing the intensity of the acoustic standing wave field by optimizing the boundary conditions of the acoustic field. In most existing standing wave systems a part of the radiating sound waves does not contribute to the process, as the waves spread into the wrong direction or wipe themselves out due to interference. In order to obtain maximum sound pressure amplitudes in the standing wave field, all waves should be trapped between the sonotrode and the reflector. In addition, the resonance condition should be met for all radiated waves. These conditions can be fulfilled by optimizing the shapes of sonotrode and resonator as well as the distance between them. This contribution reports on a model, which is able to simulate the sound field between a transducer surface and a reflector. Using a linear finite-element model, the boundary conditions of the standing wave system are optimized. Sound pressure levels of the standing wave field are calculated for different shapes of reflectors and boundary conditions like the distance between the transducer and the reflector. The simulation results are validated by sound-field measurements via refracto-vibrometry and a microphone. Finally, optimization guidelines for the generation of high-intensity acoustic standing wave fields are shown and verified by measurements. Full article
Show Figures

Figure 1

21 pages, 2600 KiB  
Article
Multiple Sound Sources Localization with Frame-by-Frame Component Removal of Statistically Dominant Source
by Maoshen Jia, Yuxuan Wu, Changchun Bao and Jing Wang
Sensors 2018, 18(11), 3613; https://doi.org/10.3390/s18113613 - 24 Oct 2018
Cited by 7 | Viewed by 3444
Abstract
Multiple sound sources localization is a hot topic in audio signal processing and is widely utilized in many application areas. This paper proposed a multiple sound sources localization method based on a statistically dominant source component removal (SDSCR) algorithm by soundfield microphone. The [...] Read more.
Multiple sound sources localization is a hot topic in audio signal processing and is widely utilized in many application areas. This paper proposed a multiple sound sources localization method based on a statistically dominant source component removal (SDSCR) algorithm by soundfield microphone. The existence of the statistically weak source (SWS) among soundfield microphone signals is validated by statistical analysis. The SDSCR algorithm with joint an intra-frame and inter-frame statistically dominant source (SDS) discriminations is designed to remove the component of SDS while reserve the SWS component. The degradation of localization accuracy caused by the existence of the SWS is resolved using the SDSCR algorithm. The objective evaluation of the proposed method is conducted in simulated and real environments. The results show that the proposed method achieves a better performance compared with the conventional SSZ-based method both in sources localization and counting. Full article
Show Figures

Figure 1

19 pages, 1396 KiB  
Review
Surround by Sound: A Review of Spatial Audio Recording and Reproduction
by Wen Zhang, Parasanga N. Samarasinghe, Hanchi Chen and Thushara D. Abhayapala
Appl. Sci. 2017, 7(5), 532; https://doi.org/10.3390/app7050532 - 20 May 2017
Cited by 102 | Viewed by 22865
Abstract
In this article, a systematic overview of various recording and reproduction techniques for spatial audio is presented. While binaural recording and rendering is designed to resemble the human two-ear auditory system and reproduce sounds specifically for a listener’s two ears, soundfield recording and [...] Read more.
In this article, a systematic overview of various recording and reproduction techniques for spatial audio is presented. While binaural recording and rendering is designed to resemble the human two-ear auditory system and reproduce sounds specifically for a listener’s two ears, soundfield recording and reproduction using a large number of microphones and loudspeakers replicate an acoustic scene within a region. These two fundamentally different types of techniques are discussed in the paper. A recent popular area, multi-zone reproduction, is also briefly reviewed in the paper. The paper is concluded with a discussion of the current state of the field and open problems. Full article
(This article belongs to the Special Issue Spatial Audio)
Show Figures

Figure 1

Back to TopTop