Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = solidagenone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2624 KiB  
Article
Solidagenone from Solidago chilensis Meyen Protects against Acute Peritonitis and Lipopolysaccharide-Induced Shock by Regulating NF-κB Signaling Pathway
by Ivanilson Pimenta Santos, Laís Peres Silva, Dahara Keyse Carvalho Silva, Bruna Padilha Zurita Claro dos Reis, Temistocles Barroso de Oliveira, Andressa Maia Kelly, Edivaldo dos Santos Rodrigues, Claudia Valeria Campos de Souza, José Fernando Oliveira-Costa, Simone Sacramento Valverde, Osvaldo Andrade Santos-Filho, Milena Botelho Pereira Soares and Cássio Santana Meira
Pharmaceuticals 2024, 17(3), 273; https://doi.org/10.3390/ph17030273 - 21 Feb 2024
Viewed by 2160
Abstract
Anti-inflammatory agents are widely used for the treatment of inflammatory diseases. Nevertheless, the associated side effects of the available drugs make it necessary to search for new anti-inflammatory drugs. Here, we investigated the anti-inflammatory activity of solidagenone. Initially, we observed that a single [...] Read more.
Anti-inflammatory agents are widely used for the treatment of inflammatory diseases. Nevertheless, the associated side effects of the available drugs make it necessary to search for new anti-inflammatory drugs. Here, we investigated the anti-inflammatory activity of solidagenone. Initially, we observed that a single dose of 30, 60, or 90 mg/kg of solidagenone did not result in mortality or elicit any discernible signs of toxicity in mice. At the same doses, solidagenone promoted a significant reduction in the migration of neutrophils in an acute peritonitis model and decreased mortality in a lipopolysaccharide-induced endotoxic shock model. Interestingly, treatment with solidagenone conferred a protective effect against leukopenia and thrombocytopenia, hematological disorders commonly observed in sepsis conditions. In addition, treatment with all the doses of solidagenone promoted a significant reduction in nitric oxide, TNF-α, and IL-1β levels relative to the LPS-stimulated vehicle-treated cultures. Furthermore, gene expression and in silico analyses also supported the modulation of the NF-κB pathway by solidagenone. Finally, in silico pharmacokinetics predictions indicated a favorable drugability profile for solidagenone. Taken together, the findings of the present investigation show that solidagenone exhibits significant anti-inflammatory properties in acute experimental models, potentially through the modulation of the NF-κB signaling pathway. Full article
Show Figures

Figure 1

19 pages, 4025 KiB  
Article
Semisynthesis and Inhibitory Effects of Solidagenone Derivatives on TLR-Mediated Inflammatory Responses
by Irene Cuadrado, Ángel Amesty, Juan Carlos Cedrón, Juan Carlos Oberti, Ana Estévez-Braun, Sonsoles Hortelano and Beatriz De las Heras
Molecules 2018, 23(12), 3197; https://doi.org/10.3390/molecules23123197 - 4 Dec 2018
Cited by 16 | Viewed by 3015
Abstract
A series of nine derivatives (210) were prepared from the diterpene solidagenone (1) and their structures were elucidated by means of spectroscopic studies. Their ability to inhibit inflammatory responses elicited in peritoneal macrophages by TLR ligands was [...] Read more.
A series of nine derivatives (210) were prepared from the diterpene solidagenone (1) and their structures were elucidated by means of spectroscopic studies. Their ability to inhibit inflammatory responses elicited in peritoneal macrophages by TLR ligands was investigated. Compounds 5 and 6 showed significant anti-inflammatory effects, as they inhibited the protein expression of nitric oxide synthase (NOS-2), cyclooxygenase-2 (COX-2), and cytokine production (TNF-α, IL-6, and IL-12) induced by the ligand of TLR4, lipopolysaccharide (LPS), acting at the transcriptional level. Some structure–activity relationships were outlined. Compound 5 was selected as a representative compound and molecular mechanisms involved in its biological activity were investigated. Inhibition of NF-κB and p38 signaling seems to be involved in the mechanism of action of compound 5. In addition, this compound also inhibited inflammatory responses mediated by ligands of TLR2 and TLR3 receptors. To rationalize the obtained results, molecular docking and molecular dynamic studies were carried out on TLR4. All these data indicate that solidagenone derivative 5 might be used for the design of new anti-inflammatory agents. Full article
Show Figures

Graphical abstract

Back to TopTop