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Abstract: Anti-inflammatory agents are widely used for the treatment of inflammatory diseases.
Nevertheless, the associated side effects of the available drugs make it necessary to search for new
anti-inflammatory drugs. Here, we investigated the anti-inflammatory activity of solidagenone.
Initially, we observed that a single dose of 30, 60, or 90 mg/kg of solidagenone did not result in
mortality or elicit any discernible signs of toxicity in mice. At the same doses, solidagenone promoted
a significant reduction in the migration of neutrophils in an acute peritonitis model and decreased
mortality in a lipopolysaccharide-induced endotoxic shock model. Interestingly, treatment with
solidagenone conferred a protective effect against leukopenia and thrombocytopenia, hematological
disorders commonly observed in sepsis conditions. In addition, treatment with all the doses of
solidagenone promoted a significant reduction in nitric oxide, TNF-α, and IL-1β levels relative to the
LPS-stimulated vehicle-treated cultures. Furthermore, gene expression and in silico analyses also
supported the modulation of the NF-κB pathway by solidagenone. Finally, in silico pharmacokinetics
predictions indicated a favorable drugability profile for solidagenone. Taken together, the findings of
the present investigation show that solidagenone exhibits significant anti-inflammatory properties in
acute experimental models, potentially through the modulation of the NF-κB signaling pathway.

Keywords: solidagenone; inflammation; endotoxic shock; NF-κB

1. Introduction

Inflammation has a pivotal role in rectifying imbalances to the body’s homeostasis
and is crucial for the repair, remodeling, and renewal of various tissues under diverse and
adverse conditions [1]. Functioning as the primary line of defense, inflammation safeguards
the host from infections induced by a spectrum of pathogens, including bacteria, fungi,
parasites, and viruses [2]. Additionally, other stimuli, such as cellular damage, chemical
agents, physical injuries, burns, radiation, freezing, ischemia, and reperfusion, can incite
inflammatory responses [3].
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Classically, the treatment of inflammation entails the administration of non-steroidal
anti-inflammatory drugs or glucocorticoids [4,5]. Both exhibit varying degrees of effective-
ness in alleviating inflammation, and their use is accompanied by a spectrum of adverse
effects such as atherosclerosis, cardiac alterations, gastrointestinal disorders, hypertension,
renal toxicity, type 2 diabetes, visceral obesity, and others [5,6].

Therefore, the development of new substances exhibiting anti-inflammatory prop-
erties holds significant importance for clinical use, with the goal of securing alternative
treatments characterized by efficacy and diminished adverse effects. An attractive strategy
in this search for new drugs involves the exploration of molecules with anti-inflammatory
potential derived from medicinal plants, given the vast and yet undiscovered diversity
of bioactive compounds within the plant kingdom [7,8]. Natural products stand out as
a noteworthy reservoir for therapeutic interventions against various diseases, with the
anti-inflammatory effects of traditional herbal medicines, crude plant extracts, natural
compounds, and their derivatives having already demonstrated significant promise [7,9].

In this context, Solidago chilensis Meyen (Asteraceae) emerges as a highly promising
reservoir for the discovery of anti-inflammatory agents. This plant species, with a historical
use spanning over 700 years in South American folk medicine, has been recognized for its di-
verse therapeutic attributes, including anticancer, antidepressant, diuretic, gastroprotective,
burn treatment, and anti-inflammatory activities [10–13].

Phytochemical analyses of S. chilensis have revealed a spectrum of chemical com-
pounds, including flavonoids such as quercitrin, quercetin, and rutin, as well as diterpenes
such as deoxysolidagenone, solidagolactol, and solidagenone [14]. Notably, the relatively
underexplored compound solidagenone, isolated from the rhizomes, leaves, and inflores-
cences of S. chilensis, exhibits promising biological activities [13,15–17]. Solidagenone has
demonstrated gastroprotective activity in a murine model of gastric injury induced by
hydrochloric acid [15], attenuated skin inflammation in experimental models [16], exhib-
ited antidepressant-like effects in mice [13], and a protective effect in a model of airway
inflammation induced by ovalbumin [17]. Consequently, solidagenone holds consider-
able potential for further investigations into its anti-inflammatory activity. The present
study was designed to assess the anti-inflammatory properties of solidagenone in acute
experimental models of inflammation and its mechanism of action.

2. Results and Discussion

Firstly, the toxicity effects of a single dose of solidagenone were investigated. Admin-
istration of 30, 60, or 90 mg/kg of solidagenone did not result in mortality or elicit any
discernible signs of toxicity in the animals (Table 1). Furthermore, no significant variance
in body weight was noted among the animals treated with different doses of solidagenone
when compared to mice treated only with the vehicle solution (Table 2).

Table 1. Effect of solidagenone on behavioral and general appearance of male BALB/c mice.

Behavior or
General

Appearance

Observations

Vehicle Solidagenone
(30 mg/kg)

Solidagenone
(60 mg/kg)

Solidagenone
(90 mg/kg)

Changes in the eyes No changes No changes No changes No changes
Changes in the fur No changes No changes No changes No changes

Changes in the skin No changes No changes No changes No changes
Coma Absent Absent Absent Absent

Convulsions Absent Absent Absent Absent
Diarrhea Absent Absent Absent Absent
Lethargy Absent Absent Absent Absent
Salivation Absent Absent Absent Absent

Sleep Usual Usual Usual Usual
Tremors Absent Absent Absent Absent

The animals were subjected to daily observations for a duration of 14 days.
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Table 2. Body weight of BALB/c mice treated with compound solidagenone.

Days Vehicle Solidagenone
(30 mg/kg)

Solidagenone
(60 mg/kg)

Solidagenone
(90 mg/kg)

0 24.3 (±0.6) 24.1 (±0.3) 23.8 (±1.6) 22.8 (±0.9)
7 24.2 (±0.3) 24.7 (±0.5) 24.0 (±1.8) 22.8 (±1.2)
14 24.4 (±0.5) 24.8 (±0.6) 24.5 (±1.5) 23.0 (±0.7)

Values represent the mean ± standard deviation of six animals per group.

Toxicological investigations of bioactive compounds derived from medicinal plants
are essential to ensure the safety of using herbs in the treatment of a series of diseases [18].
Therefore, it is relevant to analyze the acute toxicity generated by treatment with sol-
idagenone in mice. Here, we verified that the compound did not present toxicity at any of
the administered doses used (30, 60, and 90 mg/kg). These findings are consistent with the
literature; Rodriguez and collaborators [19] used a similar methodology to the one used
in this study and verified that solidagenone, intraperitoneally injected, did not show any
observable symptoms of toxicity or mortality in Swiss mice treated with doses ranging
from 100 to 600 mg/kg.

A crucial index for evaluating the physiological or pathological state of mice subjected
to experimental tests is body weight. Alterations in body weight often correlate with
significant physiological changes, warranting a thorough analysis of this parameter [20]. In
our study, we found that treatment with solidagenone did not induce significant changes
in the weight of the animals.

Next, we assessed the anti-inflammatory activity of solidagenone, first in a mouse
model of acute peritonitis induced by carrageenan. As revealed in Figure 1, mice sub-
jected to carrageenan stimulation and treated with a vehicle solution exhibited a mean of
274.8 neutrophils in 300 counted cells, a significant increase (p < 0.05) compared to the naïve
group which presented a mean of 1.8 neutrophils in 300 counted cells. In comparison to the
vehicle-treated group, pre-treatment with solidagenone at doses of 30, 60, and 90 mg/kg
resulted in a statistically significant reduction (p < 0.05) in neutrophil migration by 58.9%,
47.6%, and 41.9%, respectively. Under the same conditions, the administration of dexam-
ethasone, at a dose of 30 mg/kg, also promoted a significant reduction (p < 0.05) of 59.6%
in neutrophil migration (Figure 1). In agreement with these data, Liz and colleagues [21]
demonstrated that an aqueous rhizome extract of S. chilensis and its two derived fractions
promoted the inhibition of leukocyte migration, particularly neutrophil migration, and
exudation in a mouse model of air pouch using carrageenan. Moreover, these effects were
accompanied by a reduction in IL-1β, TNFα, and nitric oxide production, as well as a
decrease in myeloperoxidase and adenosine deaminase activity [21]. Using a model of
pleurisy induced by carrageenan, similar results were found with extracts from leaves or
inflorescences of S. chilensis [22].

Next, the anti-inflammatory effect of solidagenone was further investigated in a
mouse model of endotoxic shock. As revealed in Figure 2, in comparison with the vehicle
group, the animals treated with solidagenone at 60 and 90 mg/kg exhibited an increased
survival rate of 45.5 and 63.3%, respectively, which was significant (p < 0.05). Under the
same conditions, dexamethasone, administered at a dose of 30 mg/kg, also promoted a
significant increase of 63.3% (p < 0.05) in the survival rate.

As expected, LPS administration induced leukopenia and thrombocytopenia in the
animals (Table 3). Interestingly, treatment with solidagenone also conferred a significant
(p < 0.05) protective effect against these hematological disorders, which are commonly
observed in sepsis conditions. Dexamethasone, while promoting a more pronounced
leukocyte recovery, did not afford protection against thrombocytopenia (Table 3).
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Figure 1. Effect of solidagenone in a model of acute peritonitis. BALB/c mice (n = 6/group) were 

submitted to a challenge with 1% carrageenan solution after treatment with solidagenone (30, 60, 

and 90 mg/Kg) or dexamethasone (Dexa; 30 mg/Kg) or vehicle (saline solution with 10% DMSO). 

Naïve group consisted of untreated and unchallenged animals. Values represent the means ± S.D. 

of six mice/group. * p < 0.05 compared to the vehicle group; # p < 0.05 compared to the naïve group. 
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Figure 2. Survival curve of mice treated with solidagenone submitted to endotoxic shock. Mice were 

orally treated with solidagenone at doses of 30 mg/kg (■), 60 mg/Kg (▲), and 90 mg/kg (▼); dexa-

methasone at a dose of 30 mg/kg (♦); or vehicle (●). The results are from two experiments performed 

independently. * p < 0.05 compared to the vehicle group. ** p < 0.01 compared to the vehicle group. 

Statistical analyses were performed using the Logrank test (Mantel Cox). 

Figure 1. Effect of solidagenone in a model of acute peritonitis. BALB/c mice (n = 6/group) were
submitted to a challenge with 1% carrageenan solution after treatment with solidagenone (30, 60, and
90 mg/kg) or dexamethasone (Dexa; 30 mg/kg) or vehicle (saline solution with 10% DMSO). Naïve
group consisted of untreated and unchallenged animals. Values represent the means ± S.D. of six
mice/group. * p < 0.05 compared to the vehicle group; # p < 0.05 compared to the naïve group.
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Figure 2. Survival curve of mice treated with solidagenone submitted to endotoxic shock. Mice
were orally treated with solidagenone at doses of 30 mg/kg (■), 60 mg/Kg (▲), and 90 mg/kg (▼);
dexamethasone at a dose of 30 mg/kg (♦); or vehicle (•). The results are from two experiments
performed independently. * p < 0.05 compared to the vehicle group. ** p < 0.01 compared to the
vehicle group. Statistical analyses were performed using the Logrank test (Mantel Cox).

For a better understanding of the anti-inflammatory effect of solidagenone, we mea-
sured the amount of nitric oxide and cytokines in the supernatant of resident macrophages
from animals previously treated with solidagenone and stimulated in vitro with LPS plus
IFNγ. As revealed in Figure 3, treatment with all the doses of solidagenone promoted
a significant reduction in the levels of nitric oxide (Figure 3A), TNF-α (Figure 3B), and
IL-1β (Figure 3C) relative to the LPS-stimulated vehicle-treated cultures. In a similar way,
dexamethasone, administered at a dose of 30 mg/kg, also promoted a significant (p <
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0.05) reduction in the levels of all the pro-inflammatory molecules evaluated (Figure 3). In
agreement with these data, solidagenone also reduced NO, IL-1β, and TNFα production
and gene expression of several inflammatory mediators (NOS2, IL1β, TNFα, and Cox2)
in peritoneal macrophages stimulated in vitro with LPS plus IFNγ [17]. Moreover, the
anti-inflammatory activity of solidagenone was also associated with nitric oxide, IL-6, and
TNFα reductions in croton-oil-, arachidonic-acid-, and phenol-induced ear edema mouse
models [16].

Table 3. Solidagenone attenuates leukopenia and thrombocytopenia in mice challenged with LPS.

Group Dose (mg/kg) Leukocytes
(103 cells/µL)

Thrombocytes
(103 mm3)

Naive - 3.8 ± 0.9 * 449.8 ± 49.2 *
Vehicle - 1.7 ± 0.2 334.5 ± 36.7

Dexamethasone 30 3.8 ± 0.4 * 337.0 ± 26.8
Solidagenone 30 1.9 ± 0.3 365.8 ± 15.2
Solidagenone 60 2.2 ± 0.4 399.4 ± 3.4 *
Solidagenone 90 2.7 ± 0.5 * 403.5 ± 40.4 *

Values represent the mean ± standard deviation of six animals per group. * p < 0.05 compared to the vehicle group.
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Figure 3. In vivo treatment with solidagenone decreases nitric oxide, TNF-α, and IL-1β production
by LPS-stimulated macrophages. Concentrations of nitrite (A), TNF-α (B), and IL-1β (C). Values
represent the means ± S.D. of six mice/group. * p < 0.05 compared to the vehicle group; # p < 0.05
compared to naïve group. $ p < 0.05 compared to dexamethasone group.

It is well established that LPS induces Toll-like receptor-4 (TLR4) activation, triggering
intracellular signaling pathways, including NF-κB activation, a pivotal transcription factor
that modulates diverse pro-inflammatory genes such as IL-1β, NOS2, and TNF-α [23,24].
Notably, as revealed in Figure 4, the treatment of activated macrophages in vitro with
different concentrations of solidagenone results in a significant (p < 0.05) reduction in the
gene expression of NF-κB. Similar results were obtained with dexamethasone treatment.

To understand the interaction between solidagenone and NF-κB, docking simulations
were performed to investigate the interactions between solidagenone and key components
involved in the NF-κB signaling pathway: the IκB kinase enzyme (IKK) and the p65 subunit
of the NF-κB transcription factor. The NF-κB transcription factor is normally bound to
the inhibitor of κB (IκB) in the cytosol, preventing its translocation to the nucleus and
the subsequent expression of inflammatory mediators [25,26]. The activation of NF-κB
is regulated by the IKK complex, which phosphorylates serine residues on IκB proteins,
leading to their polyubiquitination and degradation [27]. This process results in the release
of NF-κB, allowing it to translocate to the nucleus and initiate the transcription of genes
associated with inflammation [28].

However, the regulation of NF-κB activity extends beyond its liberation from in-
hibitory subunits and nuclear translocation in the cytoplasm. The transactivation potential
of NF-κB in the nucleus, which involves the recruitment of the transcriptional apparatus
and the stimulation of target gene expression, is further influenced by post-translational
modifications of the transcription factor and its chromatin environment [29]. In this sce-
nario, the p65 subunit of NF-κB was identified as a target of several post-translational
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modifications such as acetylation, methylation, and phosphorylation [30–33]. For example,
Wei and colleagues [34] demonstrated that the demethylation of arginine 30 (Arg30) in the
DNA-binding domain of p65 by protein-arginine methyltransferase 5 (PRMT5) plays a
crucial role in the ability of NF-κB to bind to κB elements and regulate gene expression.
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Figure 4. Gene expression of NF-κβ in untreated macrophages or macrophages treated with sol-
idagenone. Values represent the means ± S.D. of four determinations obtained in one of two
experiments performed. * p < 0.05 compared to stimulated and untreated cells; # p < 0.05 compared
to unstimulated and untreated cells; $ p < 0.05 compared to dexamethasone-treated cells.

Certainly, the p65 subunit of NF-κB and IKK play critical roles in preventing the
nuclear translocation and activation of NF-κB. They are involved in different regulatory
mechanisms for this nuclear factor, contributing to the control of NF-κB activation [25,34].
In addition, both molecules are widely used as targets for the discovery of new anti-
inflammatory drugs, and they are the targets of one of the most used inhibitors of the
NF-κB pathway, BAY11-7082 [35,36]. Therefore, docking assays with these proteins are
useful in validating new inhibitors of the NF-κB pathway.

In this context, we performed docking simulations of solidagenone in the binding
site of the p65 subunit of NF-κB (Figure 5). As can be seen, solidagenone docks to the
NF-κB system through seven van der Waals interactions (Lys-218, Arg-30, Phe-184, Asn-155,
Pro189, Lys-79, and Thr-191), one alkyl interaction (Ala-192), one Pi-alkyl interaction (Ala-
188), and one hydrogen bond interaction (Asn-190). The calculated docking energy was
equal to −6.4 kcal/mol. Other images of the solidagenone-p65 subunit of NF-κB interaction
are shown in Supplementary Material (Figure S1).

Regarding the IKK system, it is important to mention that it is organized in two
chains (A and B), comprising four domains each: the C-terminal dimerization domain
(SDD), the C-terminal kinase domain (KDC), the N-terminal kinase domain (KDN), and
the ubiquitin-like domain (ULD) (Supplementary Material, Figure S2). Since, according
to Liu and coworkers [37], chain B is an active conformation, this was the chain chosen as
the protein target for docking solidagenone. Figure 6 shows the details of the simulated
IKK–solidagenone complex. Solidagenone docks to the IKK system through six van der
Waals interactions (Lys-44, Asp-166, Lys-147, Thr-23, Gly-22, and Asn-150), one Pi-Sigma
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interaction (Leu-2), four Pi-alkyl interactions (Ala-42, Va-l29, Ile-165, and Val-152), and two
hydrogen bond interactions (Asn-28 and Glu-149). The calculated docking energy was equal
to −7.8 kcal/mol. Consequently, the solidagenone–IKK interaction is more stable than the
solidagenone–NF-κB interaction. Figure S3 shows some images of the solidagenone–IKK
interaction. The docking results, as well as the observed reduction in NF-κB gene expression
and decreased production of mediators related to NF-κB activation (such as Il-1β, nitric
oxide, and TNFα), suggest that the anti-inflammatory effect of solidagenone is linked to the
inhibition of the NF-κB pathway. This promising insight provides a foundation for future
investigations to delve deeper into the specific mechanisms and interactions involved
in the modulation of NF-κB by solidagenone, contributing to a more comprehensive
understanding of its anti-inflammatory properties.
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Lastly, the in silico ADME profile of solidagenone was generated and is summarized
in Figure 7 and Table S1. The Bioavailability Radar (Figure 7) has six axes for the six relevant
properties for oral bioavailability. Each property has a descriptor, and the range of optimal
values is depicted as a pink area. For saturation, the ratio of sp3 hybridized carbons over
the total carbon count of the molecule (Fraction Csp3) should be at least 0.25. For size, the
molecular weight should be between 150 and 500 g/mol. For polarity, the TPSA should
be between 20 and 130 Å. For solubility, log S should not exceed six. For lipophilicity,
XLOGP3 should be in the range from −0.7 to +6.0. For flexibility, the molecule should not
have more than nine rotatable bonds. In this context, solidagenone can be estimated to be
drug-like, since the red line is fully included in the pink area. Table S1 shows computed
parameters for solidagenone, grouped into different sections (physico-chemical properties,
lipophilicity, water solubility, pharmacokinetics, druglikeness, and medicinal chemistry).
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Figure 7. SwissADME plot of drug-likeness of solidagenone. The pink area represents the optimal
range for each property. For saturation (INSATU), the ratio of sp3 hybridized carbons over the total
carbon count of the molecule (Fraction Csp3) should be at least 0.25. For size, the molecular weight
should be between 150 and 500 g/mol. For polarity (POLAR), the TPSA should be between 20 and
130 Å. For solubility (INSOLU), log S should not exceed 6. For lipophilicity (LIPO), XLOGP3 should
be in the range from −0.7 to +6.0. For flexibility (FLEX), the molecule should not have more than
9 rotatable bonds.

3. Materials and Methods
3.1. Drugs

Solidagenone was obtained from Solidago chilensis inflorescences from the Pharma-
ceutical Technology Institute (FarManguinhos, Oswaldo Cruz Foundation, Rio de Janeiro,
Brazil), as previously described [16,38]. Dexamethasone (Sigma-Aldrich, St. Louis, MO,
USA) was used as positive control in anti-inflammatory experiments. All compounds were
solubilized in dimethyl sulfoxide (DMSO; PanReac, Barcelona, Spain) and diluted in culture
medium for use in in vitro assays or saline for in vivo assays. The final concentration of
DMSO did not exceed 0.1% in all in vitro assays or 10% in all in vivo analyses.

3.2. Animals

BALB/c mice (4 to 8 weeks old) were bred and housed at the Gonçalo Moniz Institute
(Oswaldo Cruz Foundation, Salvador, Bahia, Brazil) in sterilized cages, under controlled
environmental conditions, and provided with a balanced rodent diet and water ad libitum.
All animal experiments and procedures were conducted in accordance with the institution’s
committee on the ethical handling of laboratory animals and were approved under the
number L-IGM-29/2009.
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3.3. Acute Toxicity in Mice

BALB/c mice (male; 6–8 weeks of age; n = 6/group) were divided into four experi-
mental groups and treated orally with a single dose of solidagenone (30, 60, or 90 mg/kg)
or vehicle (saline solution with 10% DMSO). Following the completion of treatment, the
mice were monitored for general toxicity signs over a 15-day period. This involved the
observation of morphological and behavioral changes. Additionally, the body mass of the
animals was measured on days 0, 7, and 14.

3.4. Induction of Acute Peritonitis in Mice

BALB/c mice (males; 6–8 weeks old) were divided into six experimental groups (n = 6)
and treated orally with solidagenone (30, 60, or 90 mg/kg), dexamethasone (30 mg/kg), or
vehicle (saline solution with 10% DMSO) 24 and 1 h before the challenge. Subsequently,
the animals were challenged through an intraperitoneal injection of 250 µL of carrageenan
(Sigma-Aldrich, St. Louis, MO, USA; 1 mg/mL; 250 µL), as previously described [39]. After
4 h, the mice were euthanized and peritoneal exudates were harvested by peritoneal lavage
using a saline solution. The cells were centrifuged at 400× g for 10 min at 4 ◦C. Cytospin
preparations were stained with rapid panoptic and a differential count of 300 cells was
performed by a blinded investigator.

3.5. LPS-Induced Endotoxin Shock

BALB/c mice (male; 4–5 weeks of age) were randomized into five experimental groups
(n = 11/group) and treated orally with solidagenone (30, 60, or 90 mg/kg), dexamethasone
(30 mg/kg), or vehicle (saline solution with 10% DMSO) 24 and 3 h before the challenge.
Subsequently, the animals received a lethal dose of LPS (600 µg; from serotype 0111:B4
Escherichia coli, Sigma-Aldrich, St. Louis, MO, USA) in saline via the intraperitoneal route,
as previously described [40]. The animals were monitored for 4 days to observe survival.
In addition, a second set of experiments was performed, and heparinized blood samples
were collected 6 h after the challenge with LPS (600 µg) to analyze the leukocytes and
thrombocytes using the PE 7010VET Hematology Analyzer (Shenzhen Prokan Electronics
Inc., Shenzhen, China).

3.6. Cytokine and Nitric Oxide Production by Resident Macrophages

To evaluate nitric oxide and cytokine production by resident macrophages, groups
of male BALB/c mice were orally treated with solidagenone, dexamethasone, or vehicle
in the doses described above. After 90 min, the mice were subjected to euthanasia for
macrophage collection by means of peritoneal wash using cold Dulbecco’s modified Eagle’s
medium (DMEM; Life Technologies, GIBCO-BRL, Gaithersburg, MD, USA). The cells
were washed twice with DMEM, resuspended in DMEM supplemented with 10% fetal
bovine serum (FBS; GIBCO) and 50 µg/mL of gentamycin (Life Technologies, Carlsbad,
CA, USA), and plated into 96-well plates at a density of 2 × 105 cells/well. After 2 h of
incubation at 37 ◦C, the plates were washed with a saline solution and new medium was
added to remove non-adherent cells. The cells were then activated with LPS (500 ng/mL)
and IFNγ (5 ng/mL) and further incubated at 37 ◦C and 5% CO2. Cell-free supernatants
were collected at two different time points after incubation for the quantification of TNFα
(4 h) and for the quantification of nitric oxide and IL-1β (24 h) and kept at −80 ◦C until
further use.

3.7. Real-Time Reverse Transcription–Polymerase Chain Reaction (qRT-PCR)

Peritoneal exudate macrophages were obtained as previously described [17]. Then,
the cells were plated into a 24-well plate at 1 × 106 cells/well in a DMEM medium sup-
plemented with FBS and gentamicin for 24 h at 37 ◦C and 5% CO2. The cells were then
pretreated with solidagenone (50, 25, and 12.5 µM) or dexamethasone (12.5 µM) for 1 h
and then stimulated with LPS (500 ng/mL) and IFNγ (5 ng/mL) and incubated at 37 ◦C
for 3 h. After treatment, the gene expression of NF-κB was measured as previously de-
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scribed [17]. The following primer sequences were used in real-time PCR assays: NFkb:5′-
ATGGCAGACGATGATCCCTAC-3 and 3′-TGTTGACAGTGGTATTTCTGGTG-5.

3.8. Solidagenone Structure

For molecular modeling purposes, the solidagenone structure was obtained from
PubChem, the public chemical database of the National Center for Biotechnology Informa-
tion (NCBI) of the National Library of Medicine (NLM), an institute of the U.S. National
Institutes of Health (NIH, Bethesda, MD, USA) [41]. This structure was energy-minimized
using the quantum mechanical modeling method DFT B3LYP/def2-TZVP, which was
implemented in the Orca 5.0.3 software [42].

3.9. Crystallographic Protein Structures

The crystallographic structures of human proteins p65 subunit of NF-κB, with a
resolution of 2.70 Å (PDB ID: 1NFI) [43], and IκB kinase enzyme (IKK), with a resolution of
2.83 Å (PDB ID: 4KIK) [37], were both obtained from the Protein Data Bank [44] and used
in the docking simulations with solidagenone. The protein preparation steps were carried
out as follows: (1) non-essential water molecules were removed; (2) polar hydrogens were
added to the protein; and (3) partial charges were calculated using both the Kollman [45]
and Gasteiger’s approaches [46].

3.10. Molecular Docking Simulations

Molecular docking simulations were performed with the AutoDock Vina 1.1.2 pro-
gram [47]. Two molecular graphical programs, UCSF Chimera X [48] and BIOVIA Discovery
Studio 2021 [49], were used for visualizing ligand–protein docking interactions in 3D and
2D representations, respectively.

3.11. In Silico ADME

The SwissADME platform [50] was used for computing the physicochemical and
pharmacokinetics parameters related to the adsorption, distribution, metabolism, and
excretion (ADME) properties of solidagenone, as well as its drug-likeness.

3.12. Statistical Analyses

Statistical analyses were performed using GraphPad Prism version 8.0 (GraphPad
Software, San Diego, CA, USA). One-way analysis of variance (ANOVA) followed by
Newman–Keuls multiple comparison tests were used for the comparison of groups. P-
values less than 0.05 were considered to indicate statistical significance. The presented data
are representative of at least two or three independent experiments.

4. Conclusions

Taken together, the findings of the present investigation show that solidagenone
exhibits significant anti-inflammatory properties in acute experimental models, potentially
through the modulation of the NF-κB signaling pathway. Furthermore, solidagenone shows
no acute toxicity, and its in silico ADME profile suggests favorable drug-like characteristics.
The presented data fortify the potential of solidagenone as a basis for the development of
alternative treatments with reduced adverse effects for inflammatory conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17030273/s1, Figure S1: Solidagenone docked onto the p65
subunit of NF-κB; Figure S2: IKK system; Figure S3: IKK system and details of solidagenone–IKK
interaction. Table S1: ADME parameters, drug-likeness, and medicinal chemistry of solidagenone.
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