Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = solid oxide fuel cells (SOFC), electrocrystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7438 KiB  
Article
Formation of Conductive Oxide Scale on 33NK and 47ND Interconnector Alloys for Solid Oxide Fuel Cells
by V.A. Eremin, A.A. Solodyankin, S.A. Belyakov, A.V. Khodimchuk, A.S. Farlenkov, D.A. Krainova, N.S. Saetova, A.V. Kuzmin, A.S. Artamonov, R. Steinberger-Wilckens and M.V. Ananyev
Energies 2019, 12(24), 4795; https://doi.org/10.3390/en12244795 - 16 Dec 2019
Cited by 8 | Viewed by 2773
Abstract
: Two grades of chromium-free alloys were studied in order to apply them as interconnectors for solid oxide fuel cells. The surface modification methods were proposed for each alloy with the purpose of forming of oxide scales considering the required physicochemical properties. Investigations [...] Read more.
: Two grades of chromium-free alloys were studied in order to apply them as interconnectors for solid oxide fuel cells. The surface modification methods were proposed for each alloy with the purpose of forming of oxide scales considering the required physicochemical properties. Investigations of the structure and properties of the obtained oxide scales were performed and the efficiency of the chosen surface modification methods was approved. The samples with the surface modification exhibited higher conductivity values in comparison with the nonmodified samples. A compatibility study of samples with surface modification and glass sealant of chosen composition was accomplished. The modified samples demonstrated good adhesion during testing and electrical resistance less than 40 mOhm/cm2 at 850 °C in air, which allowed us to recommend these alloys with respective modified oxide scales as interconnectors for SOFC. Full article
Show Figures

Figure 1

Back to TopTop