Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = soft mater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3009 KB  
Case Report
Spheno-Orbital Meningioma and Vision Impairment—Case Report and Review of the Literature
by Joanna Wierzbowska, Arkadiusz Zegadło, Michał Patyk and Marek Rękas
J. Clin. Med. 2023, 12(1), 74; https://doi.org/10.3390/jcm12010074 - 22 Dec 2022
Cited by 8 | Viewed by 4480
Abstract
(1) Background: Spheno-orbital meningioma (SOM) is a very rare subtype of meningioma which arises from the sphenoid ridge with an orbital extension. It exhibits intraosseous tumor growth with hyperostosis and a widespread soft-tissue growth at the dura. The intra-orbital invasion results in painless [...] Read more.
(1) Background: Spheno-orbital meningioma (SOM) is a very rare subtype of meningioma which arises from the sphenoid ridge with an orbital extension. It exhibits intraosseous tumor growth with hyperostosis and a widespread soft-tissue growth at the dura. The intra-orbital invasion results in painless proptosis and slowly progressing visual impairment. (2) Methods: We present a case of a 46-year-old woman with SOM and compressive optic nerve neuropathy related to it. Her corrected distance visual acuity (CDVA) was decreased to 20/100, she had extensive visual field (VF) scotoma, dyschromatopsia, impaired pattern-reversal visual-evoked potential (PVEP), and decreased thicknesses of the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC), measured with the swept-source optical coherence tomography (SS-OCT), and a pale optic nerve disc in her left eye. Brain CT and MRI showed a lesion at the base of the anterior cranial fossa, involving the sphenoid wing and orbit. Pterional craniotomy and a partial removal of the tumor at the base of the skull and in the left orbit with the resection of the lesional dura mater and bony defect reconstruction were performed. (3) Results: The histological examination revealed meningothelial meningioma (WHO G1). Decreased CDVA and VF defects completely recovered, and the color vision score and PVEP improved following the surgery, but RNFL and GCC remained impaired. No tumor recurrence was observed at a follow-up of 78 months. (4) Conclusions: Optic nerve dysfunction has the capacity to improve once the compression has been relieved despite the presence of the structural features of optic nerve atrophy. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

18 pages, 4609 KB  
Article
Histomorphometric Analysis of Differential Regional Bone Regeneration Induced by Distinct Doped Membranes
by Manuel Toledano, Cristina Vallecillo, Aida Gutierrez-Corrales, Daniel Torres-Lagares, Manuel Toledano-Osorio and María-Angeles Serrera-Figallo
Polymers 2022, 14(10), 2078; https://doi.org/10.3390/polym14102078 - 19 May 2022
Cited by 5 | Viewed by 2179
Abstract
Our objective is to evaluate the regional regenerative potential of calvarial bone in critical-sized defects in a rabbit model using novel nanostructured silica-loaded membranes doped with zinc or doxycycline. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5 [...] Read more.
Our objective is to evaluate the regional regenerative potential of calvarial bone in critical-sized defects in a rabbit model using novel nanostructured silica-loaded membranes doped with zinc or doxycycline. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5 wt% of SiO2 nanoparticles (HOOC-Si-Membranes) were doped with zinc (Zn-HOOC-Si-Membrane) or doxycycline (Dox-HOOC-Si-Membrane). Critical bone defects were created on six New-Zealand-breed rabbit skulls and covered with the membranes. A sham defect without a membrane was used as the control. After six weeks, a histological analysis (toluidine blue technique) was employed to determine the area percentages of newly formed bone, osteoid bone, and soft tissue. The measurements were performed by dividing the total defect area into top (close to the membrane) and bottom (close to the dura mater) regions, or peripheral (adjacent to the old bone) and central (the sum of the remaining zones) regions. The peripheral regions of the defects showed higher osteogenic capacity than the central areas when the membranes were present. The proportion of new bone adjacent to the dura was similar to that adjacent to the membrane only when the HOOC-Si-Membranes and Zn-HOOC-Si-Membranes were used, indicating a direct osteoinductive effect of the membranes. Full article
(This article belongs to the Special Issue Biomaterials and Scaffolds for Tissue Engineering)
Show Figures

Graphical abstract

14 pages, 2167 KB  
Review
Cranial Suture Mesenchymal Stem Cells: Insights and Advances
by Bo Li, Yigan Wang, Yi Fan, Takehito Ouchi, Zhihe Zhao and Longjiang Li
Biomolecules 2021, 11(8), 1129; https://doi.org/10.3390/biom11081129 - 31 Jul 2021
Cited by 34 | Viewed by 10358
Abstract
The cranial bones constitute the protective structures of the skull, which surround and protect the brain. Due to the limited repair capacity, the reconstruction and regeneration of skull defects are considered as an unmet clinical need and challenge. Previously, it has been proposed [...] Read more.
The cranial bones constitute the protective structures of the skull, which surround and protect the brain. Due to the limited repair capacity, the reconstruction and regeneration of skull defects are considered as an unmet clinical need and challenge. Previously, it has been proposed that the periosteum and dura mater provide reparative progenitors for cranial bones homeostasis and injury repair. In addition, it has also been speculated that the cranial mesenchymal stem cells reside in the perivascular niche of the diploe, namely, the soft spongy cancellous bone between the interior and exterior layers of cortical bone of the skull, which resembles the skeletal stem cells’ distribution pattern of the long bone within the bone marrow. Not until recent years have several studies unraveled and validated that the major mesenchymal stem cell population of the cranial region is primarily located within the suture mesenchyme of the skull, and hence, they are termed suture mesenchymal stem cells (SuSCs). Here, we summarized the characteristics of SuSCs, this newly discovered stem cell population of cranial bones, including the temporospatial distribution pattern, self-renewal, and multipotent properties, contribution to injury repair, as well as the signaling pathways and molecular mechanisms associated with the regulation of SuSCs. Full article
(This article belongs to the Special Issue Oral Regenerative Medicine: Current and Future)
Show Figures

Figure 1

14 pages, 7898 KB  
Article
What Is Considered a Variation of Biomechanical Parameters in Tensile Tests of Collagen-Rich Human Soft Tissues?—Critical Considerations Using the Human Cranial Dura Mater as a Representative Morpho-Mechanic Model
by Johann Zwirner, Mario Scholze, Benjamin Ondruschka and Niels Hammer
Medicina 2020, 56(10), 520; https://doi.org/10.3390/medicina56100520 - 5 Oct 2020
Cited by 18 | Viewed by 3375
Abstract
Background and Objectives: Profound knowledge on the load-dependent behavior of human soft tissues is required for the development of suitable replacements as well as for realistic computer simulations. Regarding the former, e.g., the anisotropy of a particular biological tissue has to be represented [...] Read more.
Background and Objectives: Profound knowledge on the load-dependent behavior of human soft tissues is required for the development of suitable replacements as well as for realistic computer simulations. Regarding the former, e.g., the anisotropy of a particular biological tissue has to be represented with site- and direction-dependent particular mechanical values. Contrary to this concept of consistent mechanical properties of a defined soft tissue, mechanical parameters of soft tissues scatter considerably when being determined in tensile tests. In spite of numerous measures taken to standardize the mechanical testing of soft tissues, several setup- and tissue-related factors remain to influence the mechanical parameters of human soft tissues to a yet unknown extent. It is to date unclear if measurement extremes should be considered a variation or whether these data have to be deemed incorrect measurement outliers. This given study aimed to determine mechanical parameters of the human cranial dura mater as a model for human soft tissues using a highly standardized protocol and based on this, critically evaluate the definition for the term mechanical “variation” of human soft tissue. Materials and Methods: A total of 124 human dura mater samples with an age range of 3 weeks to 94 years were uniformly retrieved, osmotically adapted and mechanically tested using customized 3D-printed equipment in a quasi-static tensile testing setup. Scanning electron microscopy of 14 samples was conducted to relate the mechanical parameters to morphological features of the dura mater. Results: The here obtained mechanical parameters were scattered (elastic modulus = 46.06 MPa, interquartile range = 33.78 MPa; ultimate tensile strength = 5.56 MPa, interquartile range = 4.09 MPa; strain at maximum force = 16.58%, interquartile range = 4.81%). Scanning electron microscopy revealed a multi-layered nature of the dura mater with varying fiber directions between its outer and inner surface. Conclusions: It is concluded that mechanical parameters of soft tissues such as human dura mater are highly variable even if a highly standardized testing setup is involved. The tissue structure and composition appeared to be the main contributor to the scatter of the mechanical parameters. In consequence, mechanical variation of soft tissues can be defined as the extremes of a biomechanical parameter due to an uncontrollable change in tissue structure and/or the respective testing setup. Full article
(This article belongs to the Special Issue Variational Anatomy and Developmental Anomalies in Clinical Practice)
Show Figures

Figure 1

14 pages, 721 KB  
Article
Environmental Dependence of Artifact CD Peaks of Chiral Schiff Base 3d-4f Complexes in Soft Mater PMMA Matrix
by Yu Okamoto, Keisuke Nidaira and Takashiro Akitsu
Int. J. Mol. Sci. 2011, 12(10), 6966-6979; https://doi.org/10.3390/ijms12106966 - 19 Oct 2011
Cited by 12 | Viewed by 7381
Abstract
Four chiral Schiff base binuclear 3d-4f complexes (NdNi, NdCu, GdNi, and GdCu) have been prepared and characterized by means of electronic and CD spectra, IR spectra, magnetic measurements, and X-ray crystallography (NdNi). A so-called artifact peak of solid state CD spectra, which was [...] Read more.
Four chiral Schiff base binuclear 3d-4f complexes (NdNi, NdCu, GdNi, and GdCu) have been prepared and characterized by means of electronic and CD spectra, IR spectra, magnetic measurements, and X-ray crystallography (NdNi). A so-called artifact peak of solid state CD spectra, which was characteristic of oriented molecules without free molecular rotation, appeared at about 470 nm. Magnetic data of the complexes in the solid state (powder) and in PMMA cast films or solutions indicated that only GdCu preserved molecular structures in various matrixes of soft maters. For the first time, we have used the changes of intensity of artifact CD peaks to detect properties of environmental (media solid state (KBr pellets), PMMA cast films, concentration dependence of PMMA in acetone solutions, and pure acetone solution) for chiral 3d-4f complexes (GdCu). Rigid matrix keeping anisotropic orientation exhibited a decrease in the intensity of the artifact CD peak toward negative values. The present results suggest that solid state artifact CD peaks can be affected by environmental viscosity of a soft mater matrix. Full article
(This article belongs to the Special Issue Applications of Circular Dichroism)
Show Figures

Back to TopTop