Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = snow cover beneath clouds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10172 KiB  
Article
Reconstructing Snow Cover under Clouds and Cloud Shadows by Combining Sentinel-2 and Landsat 8 Images in a Mountainous Region
by Yanli Zhang, Changqing Ye, Ruirui Yang and Kegong Li
Remote Sens. 2024, 16(1), 188; https://doi.org/10.3390/rs16010188 - 2 Jan 2024
Cited by 6 | Viewed by 2751
Abstract
Snow cover is a sensitive indicator of global climate change, and optical images are an important means for monitoring its spatiotemporal changes. Due to the high reflectivity, rapid change, and intense spatial heterogeneity of mountainous snow cover, Sentinel-2 (S2) and Landsat 8 (L8) [...] Read more.
Snow cover is a sensitive indicator of global climate change, and optical images are an important means for monitoring its spatiotemporal changes. Due to the high reflectivity, rapid change, and intense spatial heterogeneity of mountainous snow cover, Sentinel-2 (S2) and Landsat 8 (L8) satellite imagery with both high spatial resolution and spectral resolution have become major data sources. However, optical sensors are more susceptible to cloud cover, and the two satellite images have significant spectral differences, making it challenging to obtain snow cover beneath clouds and cloud shadows (CCSs). Based on our previously published approach for snow reconstruction on S2 images using the Google Earth Engine (GEE), this study introduces two main innovations to reconstruct snow cover: (1) combining S2 and L8 images and choosing different CCS detection methods, and (2) improving the cloud shadow detection algorithm by considering land cover types, thus further improving the mountainous-snow-monitoring ability. The Babao River Basin of the Qilian Mountains in China is chosen as the study area; 399 scenes of S2 and 35 scenes of L8 are selected to analyze the spatiotemporal variations of snow cover from September 2019 to August 2022 in GEE. The results indicate that the snow reconstruction accuracies of both images are relatively high, and the overall accuracies for S2 and L8 are 80.74% and 88.81%, respectively. According to the time-series analysis of three hydrological years, it is found that there is a marked difference in the spatial distribution of snow cover in different hydrological years within the basin, with fluctuations observed overall. Full article
Show Figures

Figure 1

23 pages, 3251 KiB  
Article
European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products
by Andreas J. Dietz, Christoph Wohner and Claudia Kuenzer
Remote Sens. 2012, 4(8), 2432-2454; https://doi.org/10.3390/rs4082432 - 15 Aug 2012
Cited by 92 | Viewed by 12469
Abstract
Mean snow cover duration was derived for the entire continent of Europe based on the MODIS daily snow cover products MOD10A1 and MYD10A1 for the period from 2000 to 2011. Dates of snow cover start and snow cover melt were also estimated. Polar [...] Read more.
Mean snow cover duration was derived for the entire continent of Europe based on the MODIS daily snow cover products MOD10A1 and MYD10A1 for the period from 2000 to 2011. Dates of snow cover start and snow cover melt were also estimated. Polar darkness north of ~62°N and extensive cloud coverage affected the daily snow cover, preventing a direct derivation of the desired parameters. Combining sensor data from both MODIS platforms and applying a temporal cloud filter, cloud coverage and polar darkness were removed from the input data and accuracy remained above 90% for 87% of the area. The typical snow cover characteristics of the whole continent are illustrated and constitute a unique dataset with respect to spatial and temporal resolution. Abnormal events, glacier inventories or studies on possible impacts of climate change on snow cover characteristics are only some examples for applications where the presented results may be utilized. Full article
Show Figures

Graphical abstract

Back to TopTop