Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = small intestinal fungal overgrowth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3080 KiB  
Review
Small Intestinal Bacterial and Fungal Overgrowth: Health Implications and Management Perspectives
by Natalie Soliman, Caroline Kruithoff, Erin Marie San Valentin, Ahmed Gamal, Thomas S. McCormick and Mahmoud Ghannoum
Nutrients 2025, 17(8), 1365; https://doi.org/10.3390/nu17081365 - 17 Apr 2025
Viewed by 5357
Abstract
Background/Objectives: Small Intestinal Bacterial Overgrowth (SIBO) and Small Intestinal Fungal Overgrowth (SIFO) are distinct yet often overlapping conditions characterized by an abnormal increase in microbial populations within the small intestine. SIBO results from an overgrowth of colonic bacteria, while SIFO is driven by [...] Read more.
Background/Objectives: Small Intestinal Bacterial Overgrowth (SIBO) and Small Intestinal Fungal Overgrowth (SIFO) are distinct yet often overlapping conditions characterized by an abnormal increase in microbial populations within the small intestine. SIBO results from an overgrowth of colonic bacteria, while SIFO is driven by fungal overgrowth, primarily involving Candida species. Both conditions present with nonspecific gastrointestinal (GI) symptoms such as bloating, abdominal pain, diarrhea, and malabsorption, making differentiation between SIBO and SIFO challenging. This review aims to elucidate the underlying mechanisms, risk factors, diagnostic challenges, and management strategies associated with SIBO and SIFO. Methods: A comprehensive review of current literature was conducted, focusing on the pathophysiology, diagnostic modalities, and therapeutic approaches for SIBO and SIFO. Results: SIBO is commonly associated with factors such as reduced gastric acid secretion, impaired gut motility, and structural abnormalities like bowel obstruction and diverticula. It is frequently diagnosed using jejunal aspirates (≥105 colony forming units (CFUs)/mL) or breath tests. In contrast, SIFO is linked to prolonged antibiotic use, immunosuppression, and gut microbiome dysbiosis, with diagnosis relying on fungal cultures from small intestinal aspirates due to the absence of standardized protocols. Conclusion: The clinical overlap and frequent misdiagnosis of SIBO and SIFO highlight the need for improved diagnostic tools and a multidisciplinary approach to management. This review emphasizes the importance of understanding the mechanisms behind SIBO and SIFO, how they relate to other health outcomes, and potential management strategies to optimize patient care and therapeutic outcomes. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

15 pages, 4179 KiB  
Review
Association between Gut Dysbiosis and the Occurrence of SIBO, LIBO, SIFO and IMO
by Michalina Banaszak, Ilona Górna, Dagmara Woźniak, Juliusz Przysławski and Sławomira Drzymała-Czyż
Microorganisms 2023, 11(3), 573; https://doi.org/10.3390/microorganisms11030573 - 24 Feb 2023
Cited by 52 | Viewed by 22342
Abstract
Gut microbiota is the aggregate of all microorganisms in the human digestive system. There are 1014 CFU/mL of such microorganisms in the human body, including bacteria, viruses, fungi, archaea and protozoa. The Firmicutes and Bacteroidetes bacteria phyla comprise 90% of the human [...] Read more.
Gut microbiota is the aggregate of all microorganisms in the human digestive system. There are 1014 CFU/mL of such microorganisms in the human body, including bacteria, viruses, fungi, archaea and protozoa. The Firmicutes and Bacteroidetes bacteria phyla comprise 90% of the human gut microbiota. The microbiota support the healthy functioning of the human body by helping with digestion (mainly via short-chain fatty acids and amino acids) and producing short-chain fatty acids. In addition, it exhibits many physiological functions, such as forming the intestinal epithelium, intestinal integrity maintenance, the production of vitamins, and protection against pathogens. An altered composition or the number of microorganisms, known as dysbiosis, disrupts the body’s homeostasis and can lead to the development of inflammatory bowel disease, irritable bowel syndrome, and metabolic diseases such as diabetes, obesity and allergies. Several types of disruptions to the gut microbiota have been identified: SIBO (Small Intestinal Bacterial Overgrowth), LIBO (Large Intestinal Bacterial Overgrowth), SIFO (Small Intestinal Fungal Overgrowth), and IMO (Intestinal Methanogen Overgrowth). General gastrointestinal problems such as abdominal pain, bloating, gas, diarrhoea and constipation are the main symptoms of dysbiosis. They lead to malabsorption, nutrient deficiencies, anaemia and hypoproteinaemia. Increased lipopolysaccharide (LPS) permeability, stimulating the inflammatory response and resulting in chronic inflammation, has been identified as the leading cause of microbial overgrowth in the gut. The subject literature is extensive but of limited quality. Despite the recent interest in the gut microbiome and its disorders, more clinical research is needed to determine the pathophysiology, effective treatments, and prevention of small and large intestinal microbiota overgrowth. This review was designed to provide an overview of the available literature on intestinal microbial dysbiosis (SIBO, LIBO, SIFO and IMO) and to determine whether it represents a real threat to human health. Full article
(This article belongs to the Special Issue Beneficial Microbes and Gastrointestinal Microbiota)
Show Figures

Figure 1

15 pages, 2606 KiB  
Case Report
Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation
by Petra Prochazkova, Radka Roubalova, Jiri Dvorak, Helena Tlaskalova-Hogenova, Martina Cermakova, Petra Tomasova, Blanka Sediva, Marek Kuzma, Josef Bulant, Martin Bilej, Pavel Hrabak, Eva Meisnerova, Alena Lambertova and Hana Papezova
Microorganisms 2019, 7(9), 338; https://doi.org/10.3390/microorganisms7090338 - 10 Sep 2019
Cited by 63 | Viewed by 6806
Abstract
The change in the gut microbiome and microbial metabolites in a patient suffering from severe and enduring anorexia nervosa (AN) and diagnosed with small intestinal bacterial overgrowth syndrome (SIBO) was investigated. Microbial gut dysbiosis is associated with both AN and SIBO, and therefore [...] Read more.
The change in the gut microbiome and microbial metabolites in a patient suffering from severe and enduring anorexia nervosa (AN) and diagnosed with small intestinal bacterial overgrowth syndrome (SIBO) was investigated. Microbial gut dysbiosis is associated with both AN and SIBO, and therefore gut microbiome changes by serial fecal microbiota transplantation (FMT) is a possible therapeutic modality. This study assessed the effects of FMT on gut barrier function, microbiota composition, and the levels of bacterial metabolic products. The patient treatment with FMT led to the improvement of gut barrier function, which was altered prior to FMT. Very low bacterial alpha diversity, a lack of beneficial bacteria, together with a great abundance of fungal species were observed in the patient stool sample before FMT. After FMT, both bacterial species richness and gut microbiome evenness increased in the patient, while the fungal alpha diversity decreased. The total short-chain fatty acids (SCFAs) levels (molecules presenting an important source of energy for epithelial gut cells) gradually increased after FMT. Contrarily, one of the most abundant intestinal neurotransmitters, serotonin, tended to decrease throughout the observation period. Overall, gut microbial dysbiosis improvement after FMT was considered. However, there were no signs of patient clinical improvement. The need for an in-depth analysis of the donor´s stool and correct selection pre-FMT is evident. Full article
(This article belongs to the Special Issue Microbiota-Gut-Brain Axis)
Show Figures

Figure 1

Back to TopTop