Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = slurry agitated reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1969 KiB  
Article
Bioleaching of Metal-Polluted Mine Tailings: A Comparative Approach Between Ex Situ Slurry-Phase Stirred Reactors Versus In Situ Electrokinetic Percolation
by Irene Acosta Hernández, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero and José Villaseñor Camacho
Appl. Sci. 2024, 14(24), 11756; https://doi.org/10.3390/app142411756 - 17 Dec 2024
Cited by 1 | Viewed by 1609
Abstract
This work compares two technologies for the remediation of metal-polluted mine tailings based on lab-scale bioleaching experiments performed in (a) conventional agitated slurry-phase reactors and (b) in situ electrokinetic percolation. While ex situ bioleaching in agitated reactors has been widely studied, only a [...] Read more.
This work compares two technologies for the remediation of metal-polluted mine tailings based on lab-scale bioleaching experiments performed in (a) conventional agitated slurry-phase reactors and (b) in situ electrokinetic percolation. While ex situ bioleaching in agitated reactors has been widely studied, only a few previous works have studied the in situ option that couples bioleaching and electrokinetics. Real mine tailings from an abandoned sphalerite mine in southern Spain were used. The leaching medium was externally generated in a bioreactor using an autochthonous acidophilic culture and then added to tailings in batch experiments. This medium enabled metal leaching from mine tailings without the stringent operating conditions required by a classic bioleaching process. Metal removal efficiencies and kinetic rate constants after 15 d of treatments were calculated. Additionally, advantages or disadvantages between the two methods were discussed. The results for the innovative EK-percolation method showed rates and efficiencies that were comparable to, and in some cases better than, those achieved with conventional stirred slurry systems. Full article
Show Figures

Figure 1

13 pages, 4572 KiB  
Article
CFD Modeling of the Catalyst Oil Slurry Hydrodynamics in a High Pressure and Temperature as Potential for Biomass Liquefaction
by Artur Wodołażski, Jacek Skiba, Katarzyna Zarębska, Jarosław Polański and Adam Smolinski
Energies 2020, 13(21), 5694; https://doi.org/10.3390/en13215694 - 30 Oct 2020
Cited by 6 | Viewed by 2180
Abstract
The paper presents the simulation of a catalyst-paraffin oil slurry hydrodynamics under high pressure and temperature in a convex bottom reactor with a Rushton turbine which was conducted with an application of computational fluid dynamics (CFD) modeling. An analysis to obtain a uniform [...] Read more.
The paper presents the simulation of a catalyst-paraffin oil slurry hydrodynamics under high pressure and temperature in a convex bottom reactor with a Rushton turbine which was conducted with an application of computational fluid dynamics (CFD) modeling. An analysis to obtain a uniform distribution of solid catalyst particles suspended in paraffin oil was carried out as a potential for biomass liquefaction. The effects of the particle diameter, bed density, liquid viscosity, and the initial solid loading on slurry hydrodynamics in high pressure and temperature behavior were investigated using the Eulerian–Eulerian two-fluid model and the standard k-ε turbulence model. The main objective was to assess the performance in agitating highly concentrated slurries to obtain slurry velocity, concentration, the degree of homogeneity, and to examine their effect on the mixing quality. The results of the analysis are applied to predicting the impact of the most efficient conditions on slurry suspension qualities as potential for biomass liquefaction. Full article
Show Figures

Graphical abstract

Back to TopTop