Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = slow tool servo (STS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1408 KiB  
Article
Advanced MMC-Based Hydrostatic Bearings for Enhanced Linear Motion in Ultraprecision and Micromachining Applications
by Ali Khaghani, Atanas Ivanov and Mina Mortazavi
Micromachines 2025, 16(5), 499; https://doi.org/10.3390/mi16050499 - 24 Apr 2025
Viewed by 515
Abstract
This study investigates the impact of material selection on the performance of linear slideways in ultraprecision machines used for freeform surface machining. The primary objective is to address challenges related to load-bearing capacity and limited bandwidth in slow tool servo (STS) techniques. Multi-body [...] Read more.
This study investigates the impact of material selection on the performance of linear slideways in ultraprecision machines used for freeform surface machining. The primary objective is to address challenges related to load-bearing capacity and limited bandwidth in slow tool servo (STS) techniques. Multi-body dynamic (MBD) simulations are conducted to evaluate the performance of two materials, alloy steel and metal matrix composite (MMC), within the linear slideway system. Key performance parameters, including acceleration, velocity, and displacement, are analyzed to compare the two materials. The findings reveal that MMC outperforms alloy steel in acceleration, velocity, and displacement, demonstrating faster response times and greater linear displacement, which enhances the capabilities of STS-based ultraprecision machining. This study highlights the potential of utilizing lightweight materials, such as MMC, to optimize the performance and efficiency of linear slideways in precision engineering applications. Full article
Show Figures

Figure 1

47 pages, 39146 KiB  
Review
A Review of Advances in Fabrication Methods and Assistive Technologies of Micro-Structured Surfaces
by Yuting Ma, Guoqing Zhang, Shuaikang Cao, Zexuan Huo, Junhong Han, Shuai Ma and Zejia Huang
Processes 2023, 11(5), 1337; https://doi.org/10.3390/pr11051337 - 26 Apr 2023
Cited by 19 | Viewed by 5449
Abstract
Micro-structured surfaces possess excellent properties of friction, lubrication, drag reduction, antibacterial, and self-cleaning, which have been widely applied in optical, medical, national defense, aerospace fields, etc. Therefore, it is requisite to study the fabrication methods of micro-structures to improve the accuracy and enhance [...] Read more.
Micro-structured surfaces possess excellent properties of friction, lubrication, drag reduction, antibacterial, and self-cleaning, which have been widely applied in optical, medical, national defense, aerospace fields, etc. Therefore, it is requisite to study the fabrication methods of micro-structures to improve the accuracy and enhance the performance of micro-structures. At present, there are plenty of studies focusing on the preparation of micro-structures; therefore, systematic review of the technologies and developing trend on the fabrication of micro-structures are needed. In present review, the fabrication methods of various micro-structures are compared and summarized. Specially, the characteristics and applications of ultra-precision machining (UPM) technology in the fabrication of micro-structures are mainly discussed. Additionally, the assistive technologies applied into UPM, such as fast tool servo (FTS) technology and slow tool servo (STS) technology to fabricate micro-structures with different characteristics are summarized. Finally, the principal characteristics and applications of fly cutting technology in manufacturing special micro-structures are presented. From the review, it is found that by combining different machining methods to prepare the base layer surface first and then fabricate the sublayer surface, the advantages of different machining technologies can be greatly exerted, which is of great significance for the preparation of multi-layer and multi-scale micro-structures. Furthermore, the combination of ultra-precision fly cutting and FTS/STS possess advantages in realizing complex micro-structures with high aspect ratio and high resolution. However, residual tool marks and material recovery are still the key factors affecting the form accuracy of machined micro-structures. This review provides advances in fabrication methods and assistive technologies of micro-structured surfaces, which serves as the guidance for both fabrication and application of multi-layer and multi-scale micro-structures. Full article
Show Figures

Figure 1

17 pages, 6190 KiB  
Article
In-Situ Measurement and Slow-Tool-Servo Compensation Method of Roundness Error of a Precision Mandrel
by Zheng Qiao, Yangong Wu, Wentao Chen, Yuanyuan Jia and Bo Wang
Materials 2022, 15(22), 8037; https://doi.org/10.3390/ma15228037 - 14 Nov 2022
Cited by 4 | Viewed by 2715
Abstract
This paper describes a method for measuring and compensating the roundness error of a larger mandrel manufactured by an ultra-precision diamond-turning lathe aimed to obtain a calibration cylinder with a roundness of less than 0.1 μm. The diamond-turning machine has a cross-stacked hydrostatic [...] Read more.
This paper describes a method for measuring and compensating the roundness error of a larger mandrel manufactured by an ultra-precision diamond-turning lathe aimed to obtain a calibration cylinder with a roundness of less than 0.1 μm. The diamond-turning machine has a cross-stacked hydrostatic guideway, produces a cutting depth and feed movement direction, and a dual-spindle system that is firmly connected to the bed. Due to the good repeatability of aerostatic spindles, only in situ rather than online real-time measurements are required. To this end, three high-precision capacitance displacement sensors were utilized to detect the cross-section of the workpiece and the time domain via the three-point error separation technique to separate the roundness error from the rotation motion error. The slow tool servo (STS) cutting technique was employed to compensate for the roundness error, which did not require extra axes, only the excellent dynamic response of the feed axis; hence, the servo control parameters could be suitably adjusted. The experimental results reveal that the low-order harmonic error, often caused by aerostatic spindles, is almost removed completely. For this particular lathe, the experiments indicate that about 60% of the rotational error motion is compensated, and the roundness error is reduced to less than 0.1 μm, which is evaluated by the least-squares circle method. Full article
Show Figures

Figure 1

15 pages, 4810 KiB  
Article
Adaptive Spiral Tool Path Generation for Diamond Turning of Large Aperture Freeform Optics
by Dongfang Wang, Yongxin Sui, Huaijiang Yang and Duo Li
Materials 2019, 12(5), 810; https://doi.org/10.3390/ma12050810 - 8 Mar 2019
Cited by 15 | Viewed by 5246
Abstract
Slow tool servo (STS) diamond turning is a well-developed technique for freeform optics machining. Due to low machining efficiency, fluctuations in side-feeding motion and redundant control points for large aperture optics, this paper reports a novel adaptive tool path generation (ATPG) for STS [...] Read more.
Slow tool servo (STS) diamond turning is a well-developed technique for freeform optics machining. Due to low machining efficiency, fluctuations in side-feeding motion and redundant control points for large aperture optics, this paper reports a novel adaptive tool path generation (ATPG) for STS diamond turning. In ATPG, the sampling intervals both in feeding and cutting direction are independently controlled according to interpolation error and cutting residual tolerance. A smooth curve is approximated to the side-feeding motion for reducing the fluctuations in feeding direction. Comparison of surface generation of typical freeform surfaces with ATPG and commercial software DiffSys is conducted both theoretically and experimentally. The result demonstrates that the ATPG can effectively reduce the volume of control points, decrease the vibration of side-feeding motion and improve machining efficiency while surface quality is well maintained for large aperture freeform optics. Full article
(This article belongs to the Special Issue Micromanufacturing of Metallic Materials)
Show Figures

Figure 1

21 pages, 13384 KiB  
Article
Theoretical and Experimental Investigation of Surface Topography Generation in Slow Tool Servo Ultra-Precision Machining of Freeform Surfaces
by Duo Li, Zheng Qiao, Karl Walton, Yutao Liu, Jiadai Xue, Bo Wang and Xiangqian Jiang
Materials 2018, 11(12), 2566; https://doi.org/10.3390/ma11122566 - 17 Dec 2018
Cited by 32 | Viewed by 4942
Abstract
Freeform surfaces are featured with superior optical and physical properties and are widely adopted in advanced optical systems. Slow tool servo (STS) ultra-precision machining is an enabling manufacturing technology for fabrication of non-rotationally symmetric surfaces. This work presents a theoretical and experimental study [...] Read more.
Freeform surfaces are featured with superior optical and physical properties and are widely adopted in advanced optical systems. Slow tool servo (STS) ultra-precision machining is an enabling manufacturing technology for fabrication of non-rotationally symmetric surfaces. This work presents a theoretical and experimental study of surface topography generation in STS machining of freeform surfaces. To achieve the nanometric surface topography, a systematic approach for tool path generation was investigated, including tool path planning, tool geometry selection, and tool radius compensation. The tool radius compensation is performed only in one direction to ensure no high frequency motion is imposed on the non-dynamic axis. The development of the surface generation simulation allows the prediction of the surface topography under various tool and machining variables. Furthermore, it provides an important means for better understanding the surface generation mechanism without the need for costly trial and error tests. Machining and measurement experiments of a sinusoidal grid and microlens array sample validated the proposed tool path generation and demonstrated the effectiveness of the STS machining process to fabricate freeform surfaces with nanometric topography. The measurement results also show a uniform topography distribution over the entire surface and agree well with the simulated results. Full article
(This article belongs to the Special Issue Machining—Recent Advances, Applications and Challenges)
Show Figures

Figure 1

14 pages, 7019 KiB  
Technical Note
Experimental Investigation on Form Error for Slow Tool Servo Diamond Turning of Micro Lens Arrays on the Roller Mold
by Yutao Liu, Zheng Qiao, Da Qu, Yangong Wu, Jiadai Xue, Duo Li and Bo Wang
Materials 2018, 11(10), 1816; https://doi.org/10.3390/ma11101816 - 25 Sep 2018
Cited by 23 | Viewed by 3932
Abstract
Slow tool servo (STS) assisted ultra-precision diamond turning is considered as a promising machining process with high accuracy and low cost to generate the large-area micro lens arrays (MLAs) on the roller mold. However, the chatter mark is obvious at the cut-in part [...] Read more.
Slow tool servo (STS) assisted ultra-precision diamond turning is considered as a promising machining process with high accuracy and low cost to generate the large-area micro lens arrays (MLAs) on the roller mold. However, the chatter mark is obvious at the cut-in part of every machined micro lens along the cutting direction, which is a common problem for the generation of MLAs using STS. In this study, a novel forming approach based on STS is presented to fabricate MLAs on the aluminum alloy (6061) roller mold, which is a high-efficiency machining approach in comparison to a traditional method based on STS. Based on the different distribution patterns of the discrete point of micro lens, the equal-arc method and the equal-angle method are also proposed to generate the tool path. According to a kinematic analysis of the cutting axis, the chatter mark results from the overlarge instantaneous acceleration oscillations of the cutting axis during STS diamond turning process of MLAs. Cutting parameters including the number of discrete points and cutting time of every discrete point have been experimentally investigated to reduce the chatter mark. Finally, typical MLAs (20.52-μm height and 700-μm aperture) is successfully machined with the optimal cutting parameters. The results are acquired with a fine surface quality, i.e., form error of micro lenses is 0.632 μm, which validate the feasibility of the new machining method. Full article
(This article belongs to the Special Issue Micromanufacturing of Metallic Materials)
Show Figures

Figure 1

18 pages, 10923 KiB  
Article
Ultra-Precision Machining of a Compound Sinusoidal Grid Surface Based on Slow Tool Servo
by Shijun Ji, Jianfeng Li, Ji Zhao, Mei Feng, Changrui Sun and Handa Dai
Materials 2018, 11(6), 1001; https://doi.org/10.3390/ma11061001 - 13 Jun 2018
Cited by 15 | Viewed by 4461
Abstract
Compound sinusoidal grid surface with nanometric finish plays a significant role in modern systems and precision calibrator, which can make the systems smaller, the system structure more simple, reduce the cost, and promote the performance of the systems, but it is difficult to [...] Read more.
Compound sinusoidal grid surface with nanometric finish plays a significant role in modern systems and precision calibrator, which can make the systems smaller, the system structure more simple, reduce the cost, and promote the performance of the systems, but it is difficult to design and fabricate by traditional methods. In this paper, a compound freeform surface constructed by a paraboloidal base surface and sinusoidal grid feature surface is designed and machined by slow tool servo (STS) assisted with single point diamond turning (SPDT). A novel combination of the constant angle and constant arc-length method is presented to optimize the cutting tool path. The machining error prediction model is analyzed for fabricating the compound sinusoidal grid surface. A compound sinusoidal grid surface with 0.03 mm amplitude and period of 4 is designed and cutting process is simulated by use of MATLAB software, machining experiment is done on ultra-precision machine tool, the surface profile and topography are measured by Taylor Hobson and Keyence VR-3200, respectively. After dealing with the measurement data of compound freeform surface, form accuracy 4.25 μm in Peak Village value (PV), and surface roughness 89 nm in Ra are obtained for the machined surface. From the theoretical analysis and experimental results, it can be seen that the proposed method is a reasonable choice for fabricating the compound sinusoidal grid surface. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop