Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = single-board microcontroller (SBM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5753 KiB  
Review
Analysis of Single Board Architectures Integrating Sensors Technologies
by José Luis Álvarez, Juan Daniel Mozo and Eladio Durán
Sensors 2021, 21(18), 6303; https://doi.org/10.3390/s21186303 - 21 Sep 2021
Cited by 27 | Viewed by 7471
Abstract
Development boards, Single-Board Computers (SBCs) and Single-Board Microcontrollers (SBMs) integrating sensors and communication technologies have become a very popular and interesting solution in the last decade. They are of interest for their simplicity, versatility, adaptability, ease of use and prototyping, which allow them [...] Read more.
Development boards, Single-Board Computers (SBCs) and Single-Board Microcontrollers (SBMs) integrating sensors and communication technologies have become a very popular and interesting solution in the last decade. They are of interest for their simplicity, versatility, adaptability, ease of use and prototyping, which allow them to serve as a starting point for projects and as reference for all kinds of designs. In this sense, there are innumerable applications integrating sensors and communication technologies where they are increasingly used, including robotics, domotics, testing and measurement, Do-It-Yourself (DIY) projects, Internet of Things (IoT) devices in the home or workplace and science, technology, engineering, educational and also academic world for STEAM (Science, Technology, Engineering and Mathematics) skills. The interest in single-board architectures and their applications have caused that all electronics manufacturers currently develop low-cost single board platform solutions. In this paper we realized an analysis of the most important topics related with single-board architectures integrating sensors. We analyze the most popular platforms based on characteristics as: cost, processing capacity, integrated processing technology and open-source license, as well as power consumption (mA@V), reliability (%), programming flexibility, support availability and electronics utilities. For evaluation, an experimental framework has been designed and implemented with six sensors (temperature, humidity, CO2/TVOC, pressure, ambient light and CO) and different data storage and monitoring options: locally on a μSD (Micro Secure Digital), on a Cloud Server, on a Web Server or on a Mobile Application. Full article
Show Figures

Figure 1

16 pages, 3408 KiB  
Entry
Electronic Textiles
by Guido Ehrmann and Andrea Ehrmann
Encyclopedia 2021, 1(1), 115-130; https://doi.org/10.3390/encyclopedia1010013 - 20 Jan 2021
Cited by 25 | Viewed by 5599
Definition
Electronic textiles belong to the broader range of smart (or “intelligent”) textiles. Their “smartness” is enabled by embedded or added electronics and allows the sensing of defined parameters of their environment as well as actuating according to these sensor data. For this purpose, [...] Read more.
Electronic textiles belong to the broader range of smart (or “intelligent”) textiles. Their “smartness” is enabled by embedded or added electronics and allows the sensing of defined parameters of their environment as well as actuating according to these sensor data. For this purpose, different sensors (e.g., temperature, strain, light sensors) and actuators (e.g., LEDs or mechanical actuators) are embedded and connected with a power supply, a data processor, and internal/external communication. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

Back to TopTop