Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = simulated copper cyanide wastewater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2957 KB  
Article
Experimental Study on the Removal of Copper Cyanide from Simulated Cyanide Leaching Gold Wastewater by Flocculation Flotation
by Chenhao Zhang, Dongxia Feng, Meng Dong, Heng Zhang, Xujie Wen, Yuanbin Liu and Wang Cai
Metals 2026, 16(1), 75; https://doi.org/10.3390/met16010075 - 9 Jan 2026
Abstract
The removal of copper–cyanide complexes from cyanide gold leaching tail water poses a significant challenge, as they are difficult to eliminate and risk causing secondary pollution. This study developed a synergistic flocculation–flotation process using the bio-collector sodium cocoyl glycinate (SCG) and the coagulant [...] Read more.
The removal of copper–cyanide complexes from cyanide gold leaching tail water poses a significant challenge, as they are difficult to eliminate and risk causing secondary pollution. This study developed a synergistic flocculation–flotation process using the bio-collector sodium cocoyl glycinate (SCG) and the coagulant polyferric sulfate (PFS) for purification. Simulated wastewater, prepared based on actual gold mine effluent, was treated under optimized conditions of reagent dosage, a solution pH of 6–10, and a flotation time of 1–5 min, achieving high removal efficiencies of 96.48% for copper and 94.68% for total cyanide. Mechanistic studies via FT-IR, Zeta potential, and XPS revealed that Fe3+ from PFS formed Fe-CN complexes with both free and copper-complexed cyanide. Simultaneously, copper ions coordinated with SCG to generate a hydrophobic Fe-CN-Cu-SCG ternary complex, which was subsequently removed by adsorption onto air bubbles via the hydrophobic chains of SCG. This work provides a novel, efficient, and mechanistically clear strategy for the advanced treatment of cyanide-containing tailing water with a gold content of 0.021 mg/L. Full article
(This article belongs to the Special Issue Advances in Sustainable Utilization of Metals: Recovery and Recycling)
Show Figures

Figure 1

Back to TopTop