Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = silicon–manganese deoxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 30504 KiB  
Article
Effect of Silicon–Manganese Deoxidation on Oxygen Content and Inclusions in Molten Steel
by Tianle Song, Zhongliang Wang, Yanping Bao, Chao Gu and Zefeng Zhang
Processes 2024, 12(4), 767; https://doi.org/10.3390/pr12040767 - 10 Apr 2024
Cited by 4 | Viewed by 2760
Abstract
In order to improve the cleanliness of steel, non-aluminum deoxidation processes have begun to replace aluminum deoxidation processes. Although the aluminum deoxidation process can reduce the oxygen content in steel to <10 × 10−6, this deoxidation method causes fatigue failure resulting [...] Read more.
In order to improve the cleanliness of steel, non-aluminum deoxidation processes have begun to replace aluminum deoxidation processes. Although the aluminum deoxidation process can reduce the oxygen content in steel to <10 × 10−6, this deoxidation method causes fatigue failure resulting from the formation of large-grained spherical (Ds-type) inclusions composed of calcium–aluminate. It also tends to lead to nozzle blockage during casting. Given the above problems, this study conducted an in-depth investigation of silicon–manganese deoxidation. Thermal experiments and thermodynamic calculations were used to assess the impact of different Mn–Si ratios on the oxygen content and inclusion characteristics during the deoxidation process of molten steel with different initial oxygen contents. The experimental samples were analyzed using an oxygen–nitrogen–hydrogen analyzer, a direct reading spectrometer, and an automatic scanning electron microscope. After that, the samples were electrolyzed to observe the 2D morphology and 3D morphology of the inclusions using scanning electron microscopy. Finally, thermodynamic calculations were carried out using FactSage to verify the experimental results. The results indicated that, regardless of the initial oxygen content, silicon–manganese deoxidation maintained the total oxygen content at 35 × 10−6. It effectively managed the plasticization of inclusions in molten steel, predominantly yielding spherical silicates while minimizing Al-containing inclusions. Nevertheless, as the initial content of [O] increased, the size and density of the silicate inclusions in the steel also increased. An optimal point in the number and size of inclusions was observed with an increased Mn–Si ratio. Moreover, the combined utilization of silicon–manganese deoxidation, diffusion deoxidation, and vacuum deoxidation enabled ultra-low oxygen content control of molten steel. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 7358 KiB  
Article
The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction–Melting Separation–Slag Refining
by Bin Li, Guanyong Sun, Shaoying Li, Hanjie Guo and Jing Guo
Materials 2020, 13(8), 1839; https://doi.org/10.3390/ma13081839 - 14 Apr 2020
Cited by 7 | Viewed by 4612
Abstract
In this study, high-purity iron with purity of 99.987 wt.% was prepared employing a process of direct reduction–melting separation–slag refining. The iron ore after pelletizing and roasting was reduced by hydrogen to obtain direct reduced iron (DRI). Carbon and sulfur were removed in [...] Read more.
In this study, high-purity iron with purity of 99.987 wt.% was prepared employing a process of direct reduction–melting separation–slag refining. The iron ore after pelletizing and roasting was reduced by hydrogen to obtain direct reduced iron (DRI). Carbon and sulfur were removed in this step and other impurities such as silicon, manganese, titanium and aluminum were excluded from metallic iron. Dephosphorization was implemented simultaneously during the melting separation step by making use of the ferrous oxide (FeO) contained in DRI. The problem of deoxidization for pure iron was solved, and the oxygen content of pure iron was reduced to 10 ppm by refining with a high basicity slag. Compared with electrolytic iron, the pure iron prepared by this method has tremendous advantages in cost and scale and has more outstanding quality than technically pure iron, making it possible to produce high-purity iron in a short-flow, large-scale, low-cost and environmentally friendly way. Full article
Show Figures

Figure 1

Back to TopTop