Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = silica point defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4030 KB  
Article
Silica Nanoparticles Disclose a Detailed Neurodegeneration Profile throughout the Life Span of a Model Organism
by Annette Limke, Gereon Poschmann, Kai Stühler, Patrick Petzsch, Thorsten Wachtmeister and Anna von Mikecz
J. Xenobiot. 2024, 14(1), 135-153; https://doi.org/10.3390/jox14010008 - 12 Jan 2024
Cited by 1 | Viewed by 2562
Abstract
The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism C. elegans [...] Read more.
The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism C. elegans, which has a life span of 2–3 weeks. Neural morphology was examined from young to old nematodes that were exposed to silica nanoparticles. Young nematodes showed phenotypes such as dendritic beading of serotonergic and dopaminergic neurons that are normally not seen until late life. During aging, neurodegeneration spreads from specifically susceptible ADF and PDE neurons in young C. elegans to other more resilient neurons, such as dopaminergic CEP in middle-aged worms. Investigation of neurodegenerative hallmarks and animal behavior revealed a temporal correlation with the acceleration of neuromuscular defects, such as internal hatch in 2-day-old C. elegans. Transcriptomics and proteomics of young worms exposed to nano silica showed a change in gene expression concerning the gene ontology groups serotonergic and dopaminergic signaling as well as neuropeptide signaling. Consistent with this, reporter strains for nlp-3, nlp-14 and nlp-21 confirmed premature degeneration of the serotonergic neuron HSN and other neurons in young C. elegans. The results identify young nematodes as a vulnerable age group for nano silica-induced neural defects with a significantly reduced health span. Neurodegeneration of specific neurons impairs signaling by classical neurotransmitters as well as neuropeptides and compromises related neuromuscular behaviors in critical phases of life, such as the reproductive phase. Full article
Show Figures

Figure 1

22 pages, 9853 KB  
Article
Radiation Effect in Ti-Cr Multilayer-Coated Silicon Carbide under Silicon Ion Irradiation up to 3 dpa
by Ryo Ishibashi, Yasunori Hayashi, Huang Bo, Takao Kondo and Tatsuya Hinoki
Coatings 2022, 12(6), 832; https://doi.org/10.3390/coatings12060832 - 14 Jun 2022
Cited by 3 | Viewed by 2871
Abstract
Replacement of conventional Zircaloy fuel cladding with silicon carbide (SiC) fuel cladding is expected to significantly decrease the amount of hydrogen generated from fuel claddings by the reaction with steam during severe accidents. One of their critical issues addressed regarding practical application has [...] Read more.
Replacement of conventional Zircaloy fuel cladding with silicon carbide (SiC) fuel cladding is expected to significantly decrease the amount of hydrogen generated from fuel claddings by the reaction with steam during severe accidents. One of their critical issues addressed regarding practical application has been hydrothermal corrosion. Thus, the corrosion resistant coating technology using a Ti-Cr multilayer was developed to suppress silica dissolution from SiC fuel cladding into reactor coolant under normal operation. The effect of radiation on adhesion of the coating to SiC substrate and its microstructure characteristics were investigated following Si ion irradiation at 573 K up to 3 dpa for SiC. Measurement of swelling in pure Ti, pure Cr and SiC revealed that the maximum inner stress attributed to the swelling difference was generated between the coating and SiC substrate by irradiation of 1 dpa. No delamination and cracking were observed in cross-sectional specimens of the coated SiC irradiated up to 3 dpa. According to analyses using transmission electron microscopy, large void formation and cascade mixing due to irradiation were not observed in the coating. The swelling in the coating at 573 K was presumed to be caused by another mechanism during radiation such as point defects rather than void formation. Full article
(This article belongs to the Special Issue Advanced Composites and Coatings for Nuclear Applications)
Show Figures

Figure 1

19 pages, 3752 KB  
Review
Intrinsic Point Defects in Silica for Fiber Optics Applications
by Giuseppe Mattia Lo Piccolo, Marco Cannas and Simonpietro Agnello
Materials 2021, 14(24), 7682; https://doi.org/10.3390/ma14247682 - 13 Dec 2021
Cited by 19 | Viewed by 4865
Abstract
Due to its unique properties, amorphous silicon dioxide (a-SiO2) or silica is a key material in many technological fields, such as high-power laser systems, telecommunications, and fiber optics. In recent years, major efforts have been made in the development [...] Read more.
Due to its unique properties, amorphous silicon dioxide (a-SiO2) or silica is a key material in many technological fields, such as high-power laser systems, telecommunications, and fiber optics. In recent years, major efforts have been made in the development of highly transparent glasses, able to resist ionizing and non-ionizing radiation. However the widespread application of many silica-based technologies, particularly silica optical fibers, is still limited by the radiation-induced formation of point defects, which decrease their durability and transmission efficiency. Although this aspect has been widely investigated, the optical properties of certain defects and the correlation between their formation dynamics and the structure of the pristine glass remains an open issue. For this reason, it is of paramount importance to gain a deeper understanding of the structure–reactivity relationship in a-SiO2 for the prediction of the optical properties of a glass based on its manufacturing parameters, and the realization of more efficient devices. To this end, we here report on the state of the most important intrinsic point defects in pure silica, with a particular emphasis on their main spectroscopic features, their atomic structure, and the effects of their presence on the transmission properties of optical fibers. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials Section)
Show Figures

Figure 1

14 pages, 3088 KB  
Article
Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups
by Cosimo Campanella, Vincenzo De Michele, Adriana Morana, Gilles Mélin, Thierry Robin, Emmanuel Marin, Youcef Ouerdane, Aziz Boukenter and Sylvain Girard
Appl. Sci. 2021, 11(7), 2991; https://doi.org/10.3390/app11072991 - 26 Mar 2021
Cited by 21 | Viewed by 4882
Abstract
Signal transmission over optical fibers in the ultraviolet to near-infrared domains remains very challenging due to their high intrinsic losses. In radiation-rich environments, this is made even more difficult due to the radiation-induced attenuation (RIA) phenomenon. We investigated here how the number of [...] Read more.
Signal transmission over optical fibers in the ultraviolet to near-infrared domains remains very challenging due to their high intrinsic losses. In radiation-rich environments, this is made even more difficult due to the radiation-induced attenuation (RIA) phenomenon. We investigated here how the number of hydroxyl groups (OH) present in multi-mode (MM) pure-silica core (PSC) optical fibers influences the RIA levels and kinetics. For this, we tested three different fiber samples: one “wet”, one “dry” and one with an intermediate “medium” OH content. The RIA of the three samples was measured in the 400–900 nm (~3 eV to ~1.4 eV) spectral range during and after an X-ray irradiation at a dose rate of 6 Gy(SiO2) s−1 up to a total accumulated dose of 300 kGy(SiO2). Furthermore, we evaluated the H2-pre-loading efficiency in the medium OH sample to permanently improve both its intrinsic losses and radiation response in the visible domain. Finally, the spectral decomposition of the various RIA responses allows us to better understand the basic mechanisms related to the point defects causing the excess of optical losses. Particularly, it reveals the relationship between the initial OH groups content and the generation of non-bridging oxygen hole centers (NBOHCs). Moreover, the presence of hydroxyl groups also affects the contribution from other intrinsic defects such as the self-trapped holes (STHs) to the RIA in this spectral domain. Full article
(This article belongs to the Special Issue Silica-Based Optical Fibers Technologies)
Show Figures

Figure 1

13 pages, 2984 KB  
Article
Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex
by Sung-Min Park, Woo-Rim Rhee, Kyu-Min Park, Yu-Jin Kim, Junyong Ahn, Jonathan C. Knowles, Jongbin Kim, Jisun Shin, Tae-Su Jang, Soo-Kyung Jun, Hae-Hyoung Lee and Jung-Hwan Lee
Nanomaterials 2021, 11(3), 596; https://doi.org/10.3390/nano11030596 - 27 Feb 2021
Cited by 8 | Viewed by 4187
Abstract
Dental caries causes tooth defects and clinical treatment is essential. To prevent further damage and protect healthy teeth, appropriate dental material is a need. However, the biocompatibility of dental material is needed to secure the oral environment. For this purpose, biocompatible materials were [...] Read more.
Dental caries causes tooth defects and clinical treatment is essential. To prevent further damage and protect healthy teeth, appropriate dental material is a need. However, the biocompatibility of dental material is needed to secure the oral environment. For this purpose, biocompatible materials were investigated for incorporated with dental capping material. Among them, nanomaterials are applied to dental materials to enhance their chemical, mechanical, and biological properties. This research aimed to study the physicochemical and mechanical properties and biocompatibility of a recently introduced light-curable mineral trioxide aggregate (MTA)-like material without bisphenol A-glycidyl methacrylate (Bis-GMA). To overcome the compromised mechanical properties in the absence of Bis-GMA, silica nanoparticles were synthesized and blended with a dental polymer for the formation of a nano-network. This material was compared with a conventional light-curable MTA-like material that contains Bis-GMA. Investigation of the physiochemical properties followed ISO 4049. Hydroxyl and calcium ion release from the materials was measured over 21 days. The Vickers hardness test and three-point flexural strength test were used to assess the mechanical properties. Specimens were immersed in solutions that mimicked human body plasma for seven days, and surface characteristics were analyzed. Biological properties were assessed by cytotoxicity and biomineralization tests. There was no significant difference between the tested materials with respect to overall physicochemical properties and released calcium ions. The newly produced material released more calcium ions on the third day, but 14 days later, the other material containing Bis-GMA released higher levels of calcium ions. The microhardness was reduced in a low pH environment, and differences between the specimens were observed. The flexural strength of the newly developed material was significantly higher, and different surface morphologies were detected. The recently produced extract showed higher cell viability at an extract concentration of 100%, while mineralization was clear at the conventional concentration of 25%. No significant changes in the physical properties between Bis-GMA incorporate material and nanoparticle incorporate materials. Full article
(This article belongs to the Special Issue Nanomaterials for Oral Medicine)
Show Figures

Figure 1

51 pages, 19219 KB  
Review
Mineralogy, Geochemistry and Genesis of Agate—A Review
by Jens Götze, Robert Möckel and Yuanming Pan
Minerals 2020, 10(11), 1037; https://doi.org/10.3390/min10111037 - 20 Nov 2020
Cited by 66 | Viewed by 26354
Abstract
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of [...] Read more.
Agate—a spectacular form of SiO2 and a famous gemstone—is commonly characterized as banded chalcedony. In detail, chalcedony layers in agates can be intergrown or intercalated with macrocrystalline quartz, quartzine, opal-A, opal-CT, cristobalite and/or moganite. In addition, agates often contain considerable amounts of mineral inclusions and water as both interstitial molecular H2O and silanol groups. Most agate occurrences worldwide are related to SiO2-rich (rhyolites, rhyodacites) and SiO2-poor (andesites, basalts) volcanic rocks, but can also be formed as hydrothermal vein varieties or as silica accumulation during diagenesis in sedimentary rocks. It is assumed that the supply of silica for agate formation is often associated with late- or post-volcanic alteration of the volcanic host rocks. Evidence can be found in association with typical secondary minerals such as clay minerals, zeolites or iron oxides/hydroxides, frequent pseudomorphs (e.g., after carbonates or sulfates) as well as the chemical composition of the agates. For instance, elements of the volcanic rock matrix (Al, Ca, Fe, Na, K) are enriched, but extraordinary high contents of Ge (>90 ppm), B (>40 ppm) and U (>20 ppm) have also been detected. Calculations based on fluid inclusion and oxygen isotope studies point to a range between 20 and 230 °C for agate formation temperatures. The accumulation and condensation of silicic acid result in the formation of silica sols and proposed amorphous silica as precursors for the development of the typical agate micro-structure. The process of crystallisation often starts with spherulitic growth of chalcedony continuing into chalcedony fibers. High concentrations of lattice defects (oxygen and silicon vacancies, silanol groups) detected by cathodoluminescence (CL) and electron paramagnetic resonance (EPR) spectroscopy indicate a rapid crystallisation via an amorphous silica precursor under non-equilibrium conditions. It is assumed that the formation of the typical agate microstructure is governed by processes of self-organization. The resulting differences in crystallite size, porosity, kind of silica phase and incorporated color pigments finally cause the characteristic agate banding and colors. Full article
(This article belongs to the Special Issue Agates: Types, Mineralogy, Deposits, Host Rocks, Ages and Genesis)
Show Figures

Figure 1

17 pages, 2059 KB  
Review
The Relevance of Point Defects in Studying Silica-Based Materials from Bulk to Nanosystems
by Antonino Alessi, Jochen Kuhnhenn, Gianpiero Buscarino, Diego Di Francesca and Simonpietro Agnello
Electronics 2019, 8(12), 1378; https://doi.org/10.3390/electronics8121378 - 20 Nov 2019
Cited by 6 | Viewed by 4161
Abstract
The macroscopic properties of silica can be modified by the presence of local microscopic modifications at the scale of the basic molecular units (point defects). Such defects can be generated during the production of glass, devices, or by the environments where the latter [...] Read more.
The macroscopic properties of silica can be modified by the presence of local microscopic modifications at the scale of the basic molecular units (point defects). Such defects can be generated during the production of glass, devices, or by the environments where the latter have to operate, impacting on the devices’ performance. For these reasons, the identification of defects, their generation processes, and the knowledge of their electrical and optical features are relevant for microelectronics and optoelectronics. The aim of this manuscript is to report some examples of how defects can be generated, how they can impact device performance, and how a defect species or a physical phenomenon that is a disadvantage in some fields can be used as an advantage in others. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

13 pages, 6875 KB  
Article
Synthesis of Silica Microspheres—Inspired by the Formation of Ice Crystals—With High Homogeneous Particle Sizes and Their Applications in Photonic Crystals
by Xiaoyi Chen, Hongbo Xu, Chunxia Hua, Jiupeng Zhao, Yao Li and Ying Song
Materials 2018, 11(10), 2017; https://doi.org/10.3390/ma11102017 - 18 Oct 2018
Cited by 7 | Viewed by 4143
Abstract
Silica microspheres (SMs) must possess the performances of desirable monodispersity, narrow particle size distribution, and high sphericity for preparing photonic crystals (PCs) and other materials such as microspheres reference material, etc. We have adopted the techniques of increasing reactant concentration and raising the [...] Read more.
Silica microspheres (SMs) must possess the performances of desirable monodispersity, narrow particle size distribution, and high sphericity for preparing photonic crystals (PCs) and other materials such as microspheres reference material, etc. We have adopted the techniques of increasing reactant concentration and raising the temperature to improve the synthesis rate of SMs, gaining inspiration from the formation mechanism of ice crystals. SMs with uniform particle sizes (polydispersity index less than 0.05) and good spherical features were fabricated through homogeneous nucleation. The mathematical relationship between particle sizes of SMs and reactant concentrations is further fitted. High accuracy of the regression equation is verified by an F-test and verification experiment. Highly ordered PCs (the stacking fault is about 1.5%, and the point defect is about 10−3) with dense stacked opal structures have been obtained by self-assembly of SMs. In addition, highly ordered PCs (the stacking fault is about 3%, and the point defect is about 10−3) with non-dense packed opal structure and inverse opal structure were successfully prepared. PCs of inverse opal structure were used to examine their response characteristics to identify ethanol, exhibiting good performance. Our research may provide significant inspiration for the development of other sorts of microspheres. Full article
Show Figures

Graphical abstract

23 pages, 4341 KB  
Article
Effect of Polishing-Induced Subsurface Impurity Defects on Laser Damage Resistance of Fused Silica Optics and Their Removal with HF Acid Etching
by Jian Cheng, Jinghe Wang, Jing Hou, Hongxiang Wang and Lei Zhang
Appl. Sci. 2017, 7(8), 838; https://doi.org/10.3390/app7080838 - 15 Aug 2017
Cited by 41 | Viewed by 9604
Abstract
Laser-induced damage on fused silica optics remains a major issue that limits the promotion of energy output of large laser systems. Subsurface impurity defects inevitably introduced in the practical polishing process incur strong thermal absorption for incident lasers, seriously lowering the laser-induced damage [...] Read more.
Laser-induced damage on fused silica optics remains a major issue that limits the promotion of energy output of large laser systems. Subsurface impurity defects inevitably introduced in the practical polishing process incur strong thermal absorption for incident lasers, seriously lowering the laser-induced damage threshold (LIDT). Here, we simulate the temperature and thermal stress distributions involved in the laser irradiation process to investigate the effect of impurity defects on laser damage resistance. Then, HF-based etchants (HF:NH4F) are applied to remove the subsurface impurity defects and the surface quality, impurity contents and laser damage resistance of etched silica surfaces are tested. The results indicate that the presence of impurity defects could induce a dramatic rise of local temperature and thermal stress. The maximum temperature and stress can reach up to 7073 K and 8739 MPa, respectively, far higher than the melting point and compressive strength of fused silica, resulting in serious laser damage. The effect of impurity defects on laser damage resistance is dependent on the species, size and spatial location of the defects, and CeO2 defects play a dominant role in lowering the LIDT, followed by Fe and Al defects. CeO2 defects with radius of 0.3 μm, which reside 0.15 μm beneath the surface, are the most dangerous defects for incurring laser damage. By HF acid etching, the negative effect of impurity defects on laser damage resistance could be effectively mitigated. It is validated that with HF acid etching, the number of dangerous CeO2 defects is decreased by more than half, and the LIDT could be improved to 27.1 J/cm2. Full article
(This article belongs to the Special Issue Solid State Lasers Materials, Technologies and Applications)
Show Figures

Graphical abstract

Back to TopTop