Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = short word length (SWL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2049 KiB  
Article
Deep Learning versus Spectral Techniques for Frequency Estimation of Single Tones: Reduced Complexity for Software-Defined Radio and IoT Sensor Communications
by Hind R. Almayyali and Zahir M. Hussain
Sensors 2021, 21(8), 2729; https://doi.org/10.3390/s21082729 - 13 Apr 2021
Cited by 13 | Viewed by 3639
Abstract
Despite the increasing role of machine learning in various fields, very few works considered artificial intelligence for frequency estimation (FE). This work presents comprehensive analysis of a deep-learning (DL) approach for frequency estimation of single tones. A DL network with two layers having [...] Read more.
Despite the increasing role of machine learning in various fields, very few works considered artificial intelligence for frequency estimation (FE). This work presents comprehensive analysis of a deep-learning (DL) approach for frequency estimation of single tones. A DL network with two layers having a few nodes can estimate frequency more accurately than well-known classical techniques can. While filling the gap in the existing literature, the study is comprehensive, analyzing errors under different signal-to-noise ratios (SNRs), numbers of nodes, and numbers of input samples under missing SNR information. DL-based FE is not significantly affected by SNR bias or number of nodes. A DL-based approach can properly work using a minimal number of input nodes N at which classical methods fail. DL could use as few as two layers while having two or three nodes for each, with the complexity of O{N} compared with discrete Fourier transform (DFT)-based FE with O{Nlog2 (N)} complexity. Furthermore, less N is required for DL. Therefore, DL can significantly reduce FE complexity, memory cost, and power consumption, which is attractive for resource-limited systems such as some Internet of Things (IoT) sensor applications. Reduced complexity also opens the door for hardware-efficient implementation using short-word-length (SWL) or time-efficient software-defined radio (SDR) communications. Full article
(This article belongs to the Special Issue Intelligent Sensors and Machine Learning)
Show Figures

Figure 1

Back to TopTop