Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = short jute fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7739 KiB  
Article
Development of Short Jute Fiber-Reinforced Thermoplastic Pre-Preg Tapes
by Mengyuan Dun, Haitao Fu, Jianxiu Hao and Weihong Wang
Polymers 2025, 17(3), 388; https://doi.org/10.3390/polym17030388 - 31 Jan 2025
Cited by 2 | Viewed by 1288
Abstract
Jute fibers are renewable, light, and strong, allowing them to be considered as attractive materials in composite manufacturing. In the present work, a simple and effective method for preparing continuous pre-preg tapes from short jute fiber bundles (without twist) is developed and its [...] Read more.
Jute fibers are renewable, light, and strong, allowing them to be considered as attractive materials in composite manufacturing. In the present work, a simple and effective method for preparing continuous pre-preg tapes from short jute fiber bundles (without twist) is developed and its application in winding forming is evaluated. Linear low-density polyethylene film (LLDPE) with good flexibility and weather resistance was used as the thermoplastic matrix; jute fiber bundles were first spread parallel to each other on an LLDPE film and then rolled up to form a pre-roll. The pre-roll enclosing fiber bundles was hot-pressed in a designed mold to form a pre-preg tape, where the fiber bundles were more parallel to the tape than the fibers in twine. Although the untwisted structure exhibited a lower tensile strength for the fiber bundle, it could be processed into a continuous pre-preg with higher tensile strength than the jute twine-impregnated pre-preg. This is based on the good impregnation of the short fiber bundle and its unidirectional, uniform strengthening in the continuous pre-preg. The tensile strength and modulus of the fiber bundle-reinforced pre-preg increased by 16.70% and 257.14%, respectively, compared with jute twine-reinforced pre-preg (within the fiber proportion of 40.wt%). When applied to winding, the fiber bundle-reinforced pre-preg showed advantages of interlayer fusion, surface flatness, and ring stiffness. In contrast, the twisted continuous structure did not retain its advantage in pre-preg. The development of pre-preg tapes by discontinuous fibers might be a good way for utilizing natural fibers in the field of green engineering due to its diverse secondary processing. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymers: Manufacture, Properties and Applications)
Show Figures

Figure 1

32 pages, 14430 KiB  
Article
Mechanical Properties of Natural Jute Fiber-Reinforced Geopolymer Concrete: Effects of Various Lengths and Volume Fractions
by Abdulrhman Dhaif Allah Abdo Mohammed, Wang Ronghui and Ghasan Fahim Huseien
J. Compos. Sci. 2024, 8(11), 450; https://doi.org/10.3390/jcs8110450 - 1 Nov 2024
Cited by 1 | Viewed by 2214
Abstract
Enhancing the fracture strength and ductility of concrete through the incorporation of various types of synthetic and natural fibers with varying textures and contents remains challenging. Natural fibers, being versatile and eco-friendly construction materials, can be an excellent alternative to synthetic fibers. However, [...] Read more.
Enhancing the fracture strength and ductility of concrete through the incorporation of various types of synthetic and natural fibers with varying textures and contents remains challenging. Natural fibers, being versatile and eco-friendly construction materials, can be an excellent alternative to synthetic fibers. However, studies on natural fiber-reinforced (especially through the incorporation of jute fibers) novel composites like geopolymer binders remain deficient. Thus, the effects of various lengths (15, 25 and 35 mm) and volume contents (0.10, 0.20, 0.30, 0.40, 0.50, 0.60, and 0.70%) of natural jute fibers on the mechanical performance of fiber-reinforced geopolymer concrete were studied. The results revealed that jute fiber reinforcement remarkably affected the workability, compressive strength, fracture strengths, water absorption and microstructure properties of the proposed geopolymer concretes. Increasing the fiber length and volume fractions in the geopolymer matrix lowered the slump values and workability and increased the compressive strength. The specimen prepared with a fiber length of 35 mm and volume fractions of 0.70% displayed the lowest slump value (28 mm) and highest compressive strength (31.5 MPa) at 28 days. In addition, the specimens made with fiber volume fractions of 0.10, 0.20, 0.30, and 0.40% showed a significant improvement in the splitting tensile and flexural strengths. However, increasing the volume of the jute fibers up to 0.50% led to a slight drop in the fracture strength of the geopolymers. The specimens prepared with a length of 25 mm and a volume of 0.40% achieved the highest enhancement of splitting tensile strength (18.7%) and flexural strength (29.1%) at 28 days. In short, sustainable geopolymer concrete with high fracture performance can be obtained by incorporating natural jute fibers, leading to practical applications in the construction sector. The proposed green concrete may enable a reduction in solid waste, thus promoting a more sustainable concrete industry. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

23 pages, 23103 KiB  
Article
Development of Fiber-Reinforced Polymer Composites for Additive Manufacturing and Multi-Material Structures in Sustainable Applications
by Rawabe Fatima Faidallah, Muammel M. Hanon, Nihal D. Salman, Yousef Ibrahim, Md. Noman Babu, Tayser Sumer Gaaz, Zoltán Szakál and István Oldal
Processes 2024, 12(10), 2217; https://doi.org/10.3390/pr12102217 - 11 Oct 2024
Cited by 1 | Viewed by 2004
Abstract
This study investigates the mechanical properties of carbon and natural fiber-reinforced Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PETG) composites produced via Additive Manufacturing (AM), focusing on Material Extrusion (MEX). The performance of filaments made from pre-consumer recycled PLA (rPLA) and PETG, with [...] Read more.
This study investigates the mechanical properties of carbon and natural fiber-reinforced Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PETG) composites produced via Additive Manufacturing (AM), focusing on Material Extrusion (MEX). The performance of filaments made from pre-consumer recycled PLA (rPLA) and PETG, with varying weight percentages of hemp and jute short fibers, was evaluated through tensile testing. Comparisons were made between the original filaments (PLA, carbon fiber-reinforced PLA [CF–PLA], and PETG) and their recycled versions. Multi-material compositions—neat PLA and PETG, single-graded (PLA + CF–PLA, PETG + CF–PETG), and multi-gradient (PLA + CF–PLA + PLA, PETG + CF–PETG + PETG)—were analyzed for mechanical properties. Optical microscope images of multi-material specimens were captured before and after fracture to assess failure mechanisms. The results indicate that the original CF–PETG filaments achieved a tensile strength of 50.14 MPa, which is higher than rPLA, PLA, and CF–PLA by 2%, 70%, and 6.7%, respectively. The re-manufactured PLA filaments reinforced with 7 wt% hemp fibers exhibited a tensile strength of 38.8 MPa, representing a 29% increase compared to the original PLA filaments and a 26% improvement over recycled PLA. Additionally, incorporating 7% jute fiber into PETG resulted in a tensile strength of 62.38 MPa, reflecting a 12% improvement over the original PETG filaments and a 15% increase compared to the recycled PETG filaments. Among specimens produced by AM, CF–PLA and rPLA demonstrated the highest tensile and compressive strengths. However, multi-material composites showed reduced mechanical performance compared to neat PLA and PETG, highlighting the need for improved interlayer adhesion. This study emphasizes the importance of optimizing material combinations and fiber reinforcement to enhance the mechanical properties of composites produced through AM. Full article
Show Figures

Figure 1

22 pages, 8929 KiB  
Article
Short Jute Fiber Reinforced Cement Mortar for Out-of-Plane Strengthening of Masonry Prisms
by Lidianne do Nascimento Farias, Paulo Roberto Lopes Lima and Romildo Dias Toledo Filho
Sustainability 2024, 16(13), 5675; https://doi.org/10.3390/su16135675 - 3 Jul 2024
Cited by 3 | Viewed by 2237
Abstract
The retrofitting process contributes to the sustainability of the construction sector, since adopting measures to increase the lifespan of buildings reduces the need for new constructions. However, many of the materials used in this process come from nonrenewable sources and require significant water [...] Read more.
The retrofitting process contributes to the sustainability of the construction sector, since adopting measures to increase the lifespan of buildings reduces the need for new constructions. However, many of the materials used in this process come from nonrenewable sources and require significant water and energy consumption for production. The aim of this study is to assess the viability of using a more environmentally friendly mortar coating reinforced with short jute fibers (SJFRM) to reinforce ceramic brick masonry walls. Both coated and uncoated prisms were subjected to compression and flexural tests under two-point (line) out-of-plane loading. The reinforcement layer comprised mortar without fibers and mortars reinforced with jute fibers at levels of 2% and 4%, with lengths of 20 mm and 40 mm. Physical and mechanical tests were conducted to evaluate the properties of SJFRM in both fresh and hardened states. Results indicate that the compressive and flexural strengths were enhanced with SJFRM reinforcement due to alterations in the failure mode of the prisms. The fibers impede crack propagation in the reinforcement layer, enabling better redistribution of internal stresses in the prisms. This results in an increase of 6 to 9 times in stiffness under direct compression and up to 42 times in toughness under flexion in the prisms reinforced with SJFRM when compared to uncoated prisms. Full article
Show Figures

Figure 1

13 pages, 2908 KiB  
Article
Effect of Chemical Treatments on the Mechanical Properties of Jute/Polyester Composites
by André Luis Lima Flores, Agnė Kairytė, Jurga Šeputytė-Jucikė, Sylwia Makowska, Alessandra Lavoratti, Rafael de Avila Delucis and Sandro Campos Amico
Materials 2024, 17(10), 2320; https://doi.org/10.3390/ma17102320 - 14 May 2024
Cited by 6 | Viewed by 1980
Abstract
Natural fiber composites have been extensively studied for structural applications, with recent exploration into their potential for various uses. This study investigates the impact of chemical treatments on the properties of Brazilian jute woven fabric/polyester resin composites. Sodium hydroxide, hydrogen peroxide, and peracetic [...] Read more.
Natural fiber composites have been extensively studied for structural applications, with recent exploration into their potential for various uses. This study investigates the impact of chemical treatments on the properties of Brazilian jute woven fabric/polyester resin composites. Sodium hydroxide, hydrogen peroxide, and peracetic acid were utilized to treat the jute fabrics, followed by resin transfer molding (RTM) to form the composites. Evaluation included water absorption, flexural strength, tensile strength, and short-beam strength. The alkaline treatment induced changes in the chemical composition of the fibers’ surface. Chemical treatments resulted in increased flexural and short-beam strength of the composites, with no significant alterations in tensile properties. The hydrogen peroxide treatment exhibited lower water absorption, suggesting its potential as a viable option for enhancing the performance of these composites. Full article
Show Figures

Figure 1

14 pages, 4955 KiB  
Article
Prediction Models of Mechanical Properties of Jute/PLA Composite Based on X-ray Computed Tomography
by Xintao Zhao, Junteng Li, Shangbin Su and Ning Jiang
Polymers 2024, 16(1), 160; https://doi.org/10.3390/polym16010160 - 4 Jan 2024
Cited by 6 | Viewed by 2014
Abstract
The tensile strength and modulus of elasticity of a jute/polylactic acid (PLA) composite were found to vary nonlinearly with the loading angle of the specimen through the tensile test. The variation in these properties was related to the fiber orientation distribution (FOD) and [...] Read more.
The tensile strength and modulus of elasticity of a jute/polylactic acid (PLA) composite were found to vary nonlinearly with the loading angle of the specimen through the tensile test. The variation in these properties was related to the fiber orientation distribution (FOD) and fiber length distribution (FLD). In order to study the effects of the FOD and FLD of short fibers on the mechanical properties and to better predict the mechanical properties of short-fiber composites, the true distribution of short fibers in the composite was accurately obtained using X-ray computed tomography (XCT), in which about 70% of the jute fibers were less than 300 μm in length and the fibers were mainly distributed along the direction of mold flow. The probability density functions of the FOD and FLD were obtained by further analyzing the XCT data. Strength and elastic modulus prediction models applicable to short-fiber-reinforced polymer (SFRP) composites were created by modifying the laminate theory and the rule of mixtures using the probability density functions of the FOD and FLD. The experimental measurements were in good agreement with the model predictions. Full article
Show Figures

Figure 1

18 pages, 6204 KiB  
Article
Mechanical Performances Analysis and Prediction of Short Plant Fiber-Reinforced PLA Composites
by Wenlong Mu, Xianglin Chen, Shijie Li, Yufeng Sun, Qingpeng Wang and Jingxin Na
Polymers 2023, 15(15), 3222; https://doi.org/10.3390/polym15153222 - 28 Jul 2023
Cited by 17 | Viewed by 3182
Abstract
Plant fiber-reinforced polylactic acid (PLA) exhibits excellent mechanical properties and environmental friendliness and, therefore, has a wide range of applications. This study investigated the mechanical properties of three short plant fiber-reinforced PLA composites (flax, jute, and ramie) using mechanical testing and material characterization [...] Read more.
Plant fiber-reinforced polylactic acid (PLA) exhibits excellent mechanical properties and environmental friendliness and, therefore, has a wide range of applications. This study investigated the mechanical properties of three short plant fiber-reinforced PLA composites (flax, jute, and ramie) using mechanical testing and material characterization techniques (SEM, FTIR, and DSC). Additionally, we propose a methodology for predicting the mechanical properties of high-content short plant fiber-reinforced composite materials. Results indicate that flax fibers provide the optimal reinforcement effect due to differences in fiber composition and microstructure. Surface pretreatment of the fibers using alkali and silane coupling agents increases the fiber–matrix interface contact area, improves interface performance, and effectively enhances the mechanical properties of the composite. The mechanical properties of the composites increase with increasing fiber content, reaching the highest value at 40%, which is 38.79% higher than pure PLA. However, further increases in content lead to fiber agglomeration and decreased composite properties. When the content is relatively low (10%), the mechanical properties are degraded because of internal defects in the material, which is 40.42% lower than pure PLA. Through Micro-CT technology, the fiber was reconstructed, and it was found that the fiber was distributed mainly along the direction of injection molding, and the twin-screw process changes the shape and length of the fiber. By introducing the fiber agglomeration factor function and correcting the Halpin-Tsai criterion, the mechanical properties of composite materials with different contents were successfully predicted. Considering the complex stress state of composite materials in actual service processes, a numerical simulation method was established based on transversely isotropic material using the finite element method combined with theoretical analysis. The mechanical properties of high-content short plant fiber-reinforced composite materials were successfully predicted, and the simulation results showed strong agreement with the experimental results. Full article
Show Figures

Figure 1

19 pages, 2715 KiB  
Review
Physical, Chemical, and Mechanical Characterization of Natural Bark Fibers (NBFs) Reinforced Polymer Composites: A Bibliographic Review
by Sivasubramanian Palanisamy, Mayandi Kalimuthu, Rajini Nagarajan, José Maria Fernandes Marlet and Carlo Santulli
Fibers 2023, 11(2), 13; https://doi.org/10.3390/fib11020013 - 28 Jan 2023
Cited by 35 | Viewed by 4706
Abstract
The specific interest for the use of bark in materials, instead than for energy recovery, is owed to circular economy considerations, since bark fibers are normally byproducts or even waste from other sectors, and therefore their use would globally reduce the amount of [...] Read more.
The specific interest for the use of bark in materials, instead than for energy recovery, is owed to circular economy considerations, since bark fibers are normally byproducts or even waste from other sectors, and therefore their use would globally reduce the amount of refuse by replacing other materials in the production of composites. For the purpose of promoting their application in polymer composites, mainly under a geometry of short random fibers, bark fibers are extracted and treated, normally chemically by alkali. Following this, investigations are increasingly carried out on their chemical composition. More specifically, this includes measuring cellulose, hemicellulose, and lignin content and their modification with treatment on their thermal properties and degradation profile, and on the mechanical performance of the fibers and of the tentatively obtained composites. This work aims at reviewing the current state of studies, trying to elicit which bark fibers might be most promising among the potentially enormous number of these, clarifying which of these have received some attention in literature and trying to elicit the reason for this specific interest. These can be more thoroughly characterized for the purpose of further use, also in competition with other fibers not from bark, but from bast, leaves, etc., and pertaining to developed production systems (cotton, hemp, flax, jute, etc.). The latter are already widely employed in the production of composites, a possibility scantly explored so far for bark fibers. However, some initial works on bark fiber composites and both thermoplastic and thermosetting are indicated and the importance of some parameters (aspect ratio, chemical treatment) is discussed. Full article
(This article belongs to the Special Issue Plant Fibers II)
Show Figures

Figure 1

14 pages, 1106 KiB  
Review
Phytoremediation: A Novel Approach of Bast Fiber Plants (Hemp, Kenaf, Jute and Flax) for Heavy Metals Decontamination in Soil—Review
by Fera Nony Cleophas, Nur Zaida Zahari, Pavitra Murugayah, Sahibin Abd Rahim and Ahmad Norazhar Mohd Yatim
Toxics 2023, 11(1), 5; https://doi.org/10.3390/toxics11010005 - 20 Dec 2022
Cited by 23 | Viewed by 5265
Abstract
Heavy metal pollution in the environment is a major concern for humans as it is non-biodegradable and can have a lot of effects on the environment, humans as well as plants. At present, a solution to this problem is suggested in terms of [...] Read more.
Heavy metal pollution in the environment is a major concern for humans as it is non-biodegradable and can have a lot of effects on the environment, humans as well as plants. At present, a solution to this problem is suggested in terms of a new, innovative and eco-friendly technology known as phytoremediation. Bast fiber plants are typically non-edible crops that have a short life cycle. It is one of the significant crops that has attracted interest for many industrial uses because of its constant fiber supply and ease of maintenance. Due to its low maintenance requirements with minimum economic investment, bast fiber plants have been widely used in phytoremediation. Nevertheless, these plants have the ability to extract metals from the soil through their deep roots, combined with their commercial prospects, making them an ideal candidate as a profit-yielding crop for phytoremediation purposes. Therefore, a comprehensive review is needed for a better understanding of the morphology and phytoremediation mechanism of four commonly bast fiber plants, such as hemp (Cannabis sativa), kenaf (Hibiscus cannabinus), jute (Corchorus olitorius) and Flax (Linum usitatissimum). This review article summarizes the existing research on the phytoremediation potential of these plants grown in different toxic pollutants such as Lead (Pb), Cadmium (Cd) and Zinc (Zn). This work also discusses several aids including natural and chemical amendments to improve phytoremediation. The role of these amendments in the bioavailability of contaminants, their uptake, translocation and bioaccumulation, as well as their effect on plant growth and development, has been highlighted in this paper. This paper helps in identifying, comparing and addressing the recent achievements of bast fiber plants for the phytoremediation of heavy metals in contaminated soil. Full article
(This article belongs to the Special Issue Effect of Emerging Pollutants on Plants)
Show Figures

Figure 1

32 pages, 12564 KiB  
Review
Current Development and Future Perspective on Natural Jute Fibers and Their Biocomposites
by Sweety Shahinur, M. M. Alamgir Sayeed, Mahbub Hasan, Abu Sadat Muhammad Sayem, Julfikar Haider and Sharifu Ura
Polymers 2022, 14(7), 1445; https://doi.org/10.3390/polym14071445 - 1 Apr 2022
Cited by 84 | Viewed by 15046
Abstract
The increasing trend of the use of synthetic products may result in an increased level of pollution affecting both the environment and living organisms. Therefore, from the sustainability point of view, natural, renewable and biodegradable materials are urgently needed to replace environmentally harmful [...] Read more.
The increasing trend of the use of synthetic products may result in an increased level of pollution affecting both the environment and living organisms. Therefore, from the sustainability point of view, natural, renewable and biodegradable materials are urgently needed to replace environmentally harmful synthetic materials. Jute, one of the natural fibers, plays a vital role in developing composite materials that showed potential in a variety of applications such as household, automotive and medical appliances. This paper first reviews the characterization and performance of jute fibers. Subsequently, the main focus is shifted towards research advancements in enhancing physical, mechanical, thermal and tribological properties of the polymeric materials (i.e., synthetic or biobased and thermoplastic or thermoset plastic) reinforced with jute fibers in a variety of forms such as particle, short fiber or woven fabric. It is understood that the physio-mechanical properties of jute-polymer composites largely vary based on the fiber processing and treatment, fiber shape and/or size, fabrication processes, fiber volume fraction, layering sequence within the matrix, interaction of the fiber with the matrix and the matrix materials used. Furthermore, the emerging research on jute fiber, such as nanomaterials from jute, bioplastic packaging, heavy metal absorption, electronics, energy device or medical applications and development of jute fiber composites with 3D printing, is explored. Finally, the key challenges for jute and its derivative products in gaining commercial successes have been highlighted and potential future directions are discussed. Full article
(This article belongs to the Special Issue Mechanical Properties of Polymer Composites)
Show Figures

Graphical abstract

22 pages, 4817 KiB  
Article
Development and Characterization of Environmentally Friendly Wood Plastic Composites from Biobased Polyethylene and Short Natural Fibers Processed by Injection Moulding
by Celia Dolza, Eduardo Fages, Eloi Gonga, Jaume Gomez-Caturla, Rafael Balart and Luis Quiles-Carrillo
Polymers 2021, 13(11), 1692; https://doi.org/10.3390/polym13111692 - 22 May 2021
Cited by 44 | Viewed by 4861
Abstract
Environmentally friendly wood plastic composites (WPC) with biobased high density polyethylene (BioHDPE) as the polymer matrix and hemp, flax and jute short fibers as natural reinforcements, were melt-compounded using twin-screw extrusion and shaped into pieces by injection molding. Polyethylene-graft-maleic anhydride (PE-g-MA) was added [...] Read more.
Environmentally friendly wood plastic composites (WPC) with biobased high density polyethylene (BioHDPE) as the polymer matrix and hemp, flax and jute short fibers as natural reinforcements, were melt-compounded using twin-screw extrusion and shaped into pieces by injection molding. Polyethylene-graft-maleic anhydride (PE-g-MA) was added at two parts per hundred resin to the WPC during the extrusion process in order to reduce the lack in compatibility between the lignocellulosic fibers and the non-polar polymer matrix. The results revealed a remarkable improvement of the mechanical properties with the combination of natural fibers, along with PE-g-MA, highly improved stiffness and mechanical properties of neat BioHDPE. Particularly, hemp fiber drastically increased the Young’s modulus and impact strength of BioHDPE. Thermal analysis revealed a slight improvement in thermal stability with the addition of the three lignocellulosic fibers, increasing both melting and degradation temperatures. The incorporation of the fibers also increased water absorption due to their lignocellulosic nature, which drastically improved the polarity of the composite. Finally, fire behavior properties were also improved in terms of flame duration, thanks to the ability of the fibers to form char protective barriers that isolate the material from oxygen and volatiles. Full article
(This article belongs to the Special Issue Natural Fibre Composites and Their Mechanical Behavior)
Show Figures

Figure 1

21 pages, 2735 KiB  
Article
Adenine as Epoxy Resin Hardener for Sustainable Composites Production with Recycled Carbon Fibers and Cellulosic Fibers
by Stefano Merighi, Laura Mazzocchetti, Tiziana Benelli and Loris Giorgini
Polymers 2020, 12(12), 3054; https://doi.org/10.3390/polym12123054 - 20 Dec 2020
Cited by 5 | Viewed by 3815
Abstract
In this work, Adenine is proposed, for the first time, as a cross-linker for epoxy resins. Adenine is an amino-substituted purine with heterocyclic aromatic structure showing both proton donors, and hydrogen bonding ability. DSC studies show that adenine is able to positively cross-link [...] Read more.
In this work, Adenine is proposed, for the first time, as a cross-linker for epoxy resins. Adenine is an amino-substituted purine with heterocyclic aromatic structure showing both proton donors, and hydrogen bonding ability. DSC studies show that adenine is able to positively cross-link a biobased DGEBA-like commercial epoxy precursor with good thermal performance and a reaction mechanism based on a 1H NMR investigation has been proposed. The use of such a formulation to produce composite with recycled short carbon fibers (and virgin ones for the sake of comparison), as well as jute and linen natural fibers as sustainable reinforcements, leads to materials with high compaction and fiber content. The curing cycle was optimized for both carbon fiber and natural fiber reinforced materials, with the aim to achieve the better final properties. All composites produced display good thermal and mechanical properties with glass transition in the range of HT resins (Tg > 150 °C, E’ =26 GPa) for the carbon fiber-based composites. The natural fiber-based composites display slightly lower performance that is nonetheless good compared with standard composite performance (Tg about 115–120 °C, E’ = 7–9 GPa). The present results thus pave the way to the application of adenine as hardener system for composites production. Full article
(This article belongs to the Special Issue Polymers from Renewable Sources and Their Mechanical Reinforcement)
Show Figures

Figure 1

12 pages, 4250 KiB  
Article
Three-Dimensional (3D) Conductive Network of CNT-Modified Short Jute Fiber-Reinforced Natural Rubber: Hierarchical CNT-Enabled Thermoelectric and Electrically Conductive Composite Interfaces
by Lazaros Tzounis, Markos Petousis, Marco Liebscher, Sotirios Grammatikos and Nectarios Vidakis
Materials 2020, 13(11), 2668; https://doi.org/10.3390/ma13112668 - 11 Jun 2020
Cited by 16 | Viewed by 4637
Abstract
Jute fibers (JFs) coated with multiwall carbon nanotubes (MWCNTs) have been introduced in a natural rubber (NR) matrix creating a three-dimensional (3D) electrically conductive percolated network. The JF-CNT endowed electrical conductivity and thermoelectric properties to the final composites. CNT networks fully covered the [...] Read more.
Jute fibers (JFs) coated with multiwall carbon nanotubes (MWCNTs) have been introduced in a natural rubber (NR) matrix creating a three-dimensional (3D) electrically conductive percolated network. The JF-CNT endowed electrical conductivity and thermoelectric properties to the final composites. CNT networks fully covered the fiber surfaces as shown by the corresponding scanning electron microscopy (SEM) analysis. NR/JF-CNT composites, at 10, 20 and 30 phr (parts per hundred gram of rubber) have been manufactured using a two-roll mixing process. The highest value of electrical conductivity (σ) was 81 S/m for the 30 phr composite. Thermoelectric measurements revealed slight differences in the Seebeck coefficient (S), while the highest power factor (PF) was 1.80 × 10−2 μW/m K−2 for the 30 phr loading. The micromechanical properties and electrical response of the composite’s conductive interface have been studied in peak force tapping quantitative nanomechanical (PFT QNM) and conductive atomic force microscopy (c-AFM) mode. The JF-CNT create an electrically percolated network at all fiber loadings endowing electrical and thermoelectric properties to the NR matrix, considered thus as promising thermoelectric stretchable materials. Full article
Show Figures

Graphical abstract

14 pages, 17725 KiB  
Article
Effect of Various Surface Treatments on the Performance of Jute Fibers Filled Natural Rubber (NR) Composites
by Kumarjyoti Roy, Subhas Chandra Debnath, Lazaros Tzounis, Aphiwat Pongwisuthiruchte and Pranut Potiyaraj
Polymers 2020, 12(2), 369; https://doi.org/10.3390/polym12020369 - 7 Feb 2020
Cited by 67 | Viewed by 4737
Abstract
In the present study, the suitability of various chemical treatments to improve the performance of jute fibers (JFs) filled natural rubber (NR) composites was explored. The surface of JFs was modified by three different surface treatments, namely, alkali treatment, combined alkali/stearic acid treatment [...] Read more.
In the present study, the suitability of various chemical treatments to improve the performance of jute fibers (JFs) filled natural rubber (NR) composites was explored. The surface of JFs was modified by three different surface treatments, namely, alkali treatment, combined alkali/stearic acid treatment and combined alkali/silane treatment. Surface modified JFs were characterized by X-ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). The reinforcing effect of untreated and surface treated JFs in NR composites was comparatively evaluated in terms of cure, mechanical, morphological and thermal properties. Combined alkali/silane treated JFs filled NR composite showed considerably higher torque difference, tensile modulus, hardness and tensile strength as compared to either untreated or other surface treated JFs filled NR systems. A crosslink density measurement suggested effective rubber-fibers interaction in combined alkali/silane treated JFs filled NR composite. Morphological analysis confirmed the improvement in the interfacial bonding between NR matrix and JFs due to combined alkali/silane treatment allowing an efficient “stress-transfer” mechanism. As a whole, combined alkali/silane treatment was found to be most efficient surface treatment method to develop strong interfacial adhesion between NR matrix and JFs. Full article
(This article belongs to the Collection Reinforced Polymer Composites)
Show Figures

Graphical abstract

24 pages, 4946 KiB  
Article
Effect of Low-Temperature Pyrolysis on the Properties of Jute Fiber-Reinforced Acetylated Softwood Kraft Lignin-Based Thermoplastic Polyurethane
by Hyun-gyoo Roh, Sunghoon Kim, Jungmin Lee and Jongshin Park
Polymers 2018, 10(12), 1338; https://doi.org/10.3390/polym10121338 - 3 Dec 2018
Cited by 7 | Viewed by 4108
Abstract
Short jute fiber-reinforced acetylated lignin-based thermoplastic polyurethane (JF reinforced ASKLTPU) was prepared and characterized as a short-fiber-reinforced elastomer with carbon-neutrality and biodegradability. The acetylated softwood kraft lignin-based thermoplastic polyurethane (ASKLTPU) was prepared with polyethylene glycol (PEG) as a soft segment. Short jute fiber [...] Read more.
Short jute fiber-reinforced acetylated lignin-based thermoplastic polyurethane (JF reinforced ASKLTPU) was prepared and characterized as a short-fiber-reinforced elastomer with carbon-neutrality and biodegradability. The acetylated softwood kraft lignin-based thermoplastic polyurethane (ASKLTPU) was prepared with polyethylene glycol (PEG) as a soft segment. Short jute fiber was modified using low-temperature pyrolysis up to the temperatures of 200, 250, and 300 °C in order to remove non-cellulosic compounds of jute fibers for enhancing interfacial bonding and reducing hydrophilicity with the ASKLTPU matrix. JF-reinforced ASKLTPUs with fiber content from 5 to 30 wt % were prepared using a melt mixing method followed by hot-press molding at 160 °C. The JF-reinforced ASKLTPUs were characterized for their mechanical properties, dynamic mechanical properties, thermal transition behavior, thermal stability, water absorption, and fungal degradability. The increased interfacial bonding between JF and ASKLTPU using low-temperature pyrolysis was observed using scanning electron microscopy (SEM) and also proved via interfacial shear strength measured using a single-fiber pull-out test. The mechanical properties, thermal properties, and water absorption aspects of JF-reinforced ASKLTPU were affected by increased interfacial bonding and reduced hydrophilicity from low-temperature pyrolysis. In the case of the degradation test, the PEG component of ASKLPTU matrix highly affects degradation and deterioration. Full article
Show Figures

Figure 1

Back to TopTop